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Abstract-The Couette flow of a partially ionized symmetric diatomic gas is studied for both chemical 
equilibrium and chemically frozen flow; the results represent a direct generalization of Couette flow with 
dissociation only. Emphasis is focused on illuminating the role of ionization through the use of this 
relatively simple geometry, and the introduction of a new ternary model for diffusion. The gas mixture is 
conSidered to consist of symmetric diatomic molecules, atoms, ions (atomic) and electrons, except for 
diffusion effects where the ions and electrons are assumed to diffuse together as one unit (ambipolar 
diffusion). The theory is limited to flows where the ion or electron number density, though sign%cant, 
is small relative to the neutral particles and the analysis is carried out in a linearized fashion with respect to 
the ion-electron mass fractions. The linearized equations are solved analytically and numerical results are 
presented for nitrogen. Ionization is found to produce an ion-electron mass flux flowing from the upper 
“hot” wall to the lower “cool” wall; when the gas phase is in chemical equilibrium ionization causes the 
atomic mass flux to split into two streams, one diffusing toward the upper “hot” wall and the other 
towards the lower “cool” wall. Ionization has a marked effect on temperaturn distribution and the recovery 

enthalpy. The heat transfer rate increases with the degree of ionization. 
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NOMENCLATURE 

skin friction coefficient; 
mass fraction of species “i” ; 
“frozen” specific heat of gas mixture ; 
binary diffusion coefficient ; 
enthalpy per unit mass of mixture ; 
enthalpy per unit mass of species“?’ ; 
dissociation energy per unit mass of 
atoms and ions ; 
ion~tion energy per unit mass of 
ions ; 
Boltzmann’s constant ; 
dissociation equilibrium coefficient ; 
ionization equilibrium coefficient ; 
Lewis number, defined in what 
follows equation (3.11) ; 
mass of particle ‘7” ; 

t Now at Department of Mechanical Engineering, 
University of Toronto, Toronto. Canada. 

Ni, mass flux of species ‘7” into the 
lower wall ; 
Nusselt number, = St Reprr ; 
total number density of the mixture; 
number density of species “i”; 
number density of heavy particles, 
nM + n,4 + nr; 
“frozen” Prandtl number ; 
heat flux into the lower wall ; 
Reynolds number, = p~u~~/~~ ; 
Stanton number, = - q,/[p&h, - 
h,Jl ; 
diffusion cross-section between 
particles of species ‘7’” and species 
6‘ 9’ . 
.I > 

diffusion velocity of species ‘2” ; 
mass average velocity ; 
distances along and normal to the 
flow ; 
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Greek symbols 
vibrational contribution to molecule 
specific heat ; 
vibrational contribution to molecule 
enthalpy ; 
ratio of the number of atoms con- 
verted at the wall into molecules to 
the total number of atoms striking 
the wall per unit time ; 
ratio of the number of ion-electron 
particles converted at the wall to 
neutral particles to the total number 
of ion-electron particles striking the 
wall per unit area per unit time ; 
distance between plates ; 
“frozen” thermal conductivity ; 
“reaction” thermal conductivity ; 
“equilibrium” thermal conductivity ; 
mass rate of formation of species “i” ; 
mass density of mixture ; 
recovery enthalpy factor, 
viscosity of the mixture. 

Subscripts 

A, atoms ; 

E, electron ; 

1, ion ; 

M, molecule ; 

R ion-electron ; 

e, chemical equilibrium ; 

I, recovery (insulated lower wall) ; 

iy 
lower wall ; 
upper wall ; 

u, vibration. 

1. INTRODUCTION 

IN THIS paper we study the effects of ionization, 
using a ternary model of diffusion (molecules, 
atoms, and an ion-electron specie determine the 
effects of diffusion) on a dissociating and 
ionizing symmetric diatomic gas in a Couette 
flow. This ternary model of diffusion has not, 
to the authors’ knowledge, been used before in 
Couette or boundary layer types of flow. Its use 
represents a generalization of Clarke’s [l] work 
(dissociation; binary model) to include partial 

ionization (dissociation and ionization ; ternary 
model). The use of this model in obtaining an 
analytic solution shall be presented. 

The simplifications resulting from the geo- 
metry of this type of flow were exploited by 
Illingworth [2] to solve the compressible flow 
problem exactly, and by Clarke [l] and 
Enkenhus [3] to study the effects of dissociation 
(using a binary model of diffusion) on the flow 
of a symmetric diatomic gas. Leipmann and 
Bleviss [4] considered the Couette flow of a 
dissociated gas, and indicated how the effect of 
ionization, on a gas in chemical equilibrium, 
can be taken into account. Couette flow was 
also used by Bleviss [5,6] to study the effects of 
magnetic and electric fields on the flow of an 
electrically conducting gas in chemical equi- 
librium. Chung [7] studied the electrical charac- 
teristics of a slightly ionized monoatomic gas in 
a Couette flow. 

The motivation for treating this type of flow 
again is the ability to obtain analytical solutions 
in a form which explicitly reveals the effects of 
ionization. We intend to exploit these results to 
disclose in some detail the influence of ionization 
(and the artificial suppression of ionization) on 
the flow of a dissociating and ionizing symmetric 
diatomic gas. 

The effect of ionization on heat transfer rates 
in stagnation point flow has recently been 
studied by several authors. Adams [S] used the 
dissociated gas theory of Fay and Riddel [9] 
with a correlation factor to account for ioniza- 
tion. Hoshizaki [lo], Pallone and Von-Tassel 
[l l] and Cohen 1121 considered only the 
chemical equilibrium case of a partially ionized 
diatomic gas. Solutions were obtained by 
numerically integrating the governing equations 
using the total thermodynamic and transport 
properties of the gas. Scala and Warren [13] 
also treated the chemical equilibrium flow of 
ionized nitrogen in the stagnation regime. The 
gas was considered to be a four component 
mixture: molecules, atoms, ions and electrons. 
There is an indication that they may have 
assumed too small a diffusion cross-section 
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between ions and electrons-Fay and Kemp [ 141 
and Fenster [ 151 used a binary model of 
diffusion for the purpose of evaluating the 
diffusive mass fluxes. Fay and Kemp considered 
atoms, ions and electrons to diffuse together as 
one particle ; molecules, however, were assumed 
to have a different diffusion velocity. Fenster 
used this same model when the flow is chemically 
frozen ; when the flow is in chemical equilibrium 
he assumed that air, before it gets ionized, 
consists of atoms and molecules ; when it is 
ionized there are atoms and ion-electron parti- 
cles only. 

Scala and Warren’s calculations show that 
the heat transfer rate increases by more than a 
factor of two as compared with that calculated 
by extrapolating the dissociated gas theory. The 
other authors’ results predict that ionization 
increases the heat transfer rate, over that 
calculated by the .extrapolated dissociated gas 
theory, by only 30 per cent or less. 

These divergent results suggest that further 
study is desirable; furthermore, the methods of 
treatment mentioned above do not disclose 
explicitly the role played by the diffusion of the 
ionized particles in the flow, except for the work 
of Fenster [15] for a binary model. By using the 
total thermodynamic and transport properties, 
the individual species mass fluxes, through 
which the diffusion role of each type of particle 
in the gas mixture may be examined, cannot be 
obtained. The binary model of diffusion used by 
Fay and Kemp suppresses the diffusion of the 
ionized particles (ions and electrons) relative to 
the atoms ; in particular, when the gas is at 
sufficiently high temperatures where there are 
only a few molecules, it effectively eliminates 
diffusion completely. 

The partially ionized symmetric diatomic gas 
we are considering is a mixture of four different 
kinds of particles: molecules, atoms, ions 
(atomic) and electrons. Because of their small 
mass, electrons should have the largest diffusion 
velocity ; however, due to Coulomb forces 
between the charged particles, electrons are 
decelerated by the heavier, slower diffusing ions. 

In ionized gas mixtures, where there are no self 
generated nor imposed electric fields, ions and 
electrons have been considered to diffuse to- 
gether as if they were one particle, which is 
known as “ambipolar” diffusion. This con- 
sideration is valid for phenomena taking place 
at a characteristic distance greater than the 
Debye shielding distance ;t within the Debye 
distance electrons diffuse with a different velocity 
than ions. In this paper, the Debye shielding 
distance is assumed much smaller than the 
characteristic length of the flow. Thus, when 
considering the effects of diffusion on such 
flows, the ionized symmetric diatomic gas will 
be considered to consist of molecules, atoms and 
“ion-electron” particles ; the “ion-electron” 
particles diffuse as one unit. For effects other 
than diffusion, all four particles are considered. 
The ion-electron particles are designated by the 
subscript “R”. 

2. FLOW EQUATIONS, MULTICOMPONENT 
DIFFUSION COEFFICIENTS AND DIFFUSIVE 

MASS FLUXES 

-The governing equations for a multicom- 
ponent gas mixture in a Couette flow are : 

d(pci~)/dy = ~, (2.1) 

G4WWl /dy = 0, (2.2) 

d[K(dT/dy) - p C hiciv]/dy + p(du/dy)’ = 0, 
I 

(2.3) 

where in the energy equation (2.3) radiation has 
been neglected. 

The rate of species mass formation hi is zero 
in gas phase when the flow is chemically frozen ; 
for equilibrium flow its value need not be 
evaluated explicitly as will be seen in section 3.1. 

The diffusion velocity K must be expressed in 
terms of variables such as p, ci, etc., and their 
gradients. For a multicomponent gas mixture 
the diffusion velocity for each of the species in 

t The Debye [16] shielding distance = 6,9(T&s)f cm; 
for p = 1.0 atm and TB = T = 12000°K it is equal to 2-91 
x 10e6cm. 
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the mixture can be obtained 
mass flux equation which, 
thermal diffusion, is [ 171 

SAID E. MATAR 

from the species 
when neglecting 

PiK = (n2/p) 1 mimjDij[d(nj/n)/dYl. 
j#i (2.4) 

Neglect of thermal diffusion is reasonable when 
temperature gradients are not too large, and 
will enable us to compare our results with other 
work [14]. 

Since C piF = 0, only the mass fluxes of 

atoms and “ion-electron” particles need be 
obtained for the ternary model considered here. 
In order to do this, we note that the mass of the 
combined “ion-electron” particle is mR = m, + 

mE= mAy . since the effects of diffusion are to be 
accounted for by a 3-component model we write 

Using equation (2.5) and noting that mM = 
2mA, one obtains 

d(n,&Mly = - (m2/mAmM) (dc,& + dcJdY), 

d(n,/n)/dY = (m2/hAmM) [(I + CR)(dCA/dY) 

- cA(dcR/dY)] 9 

d(%&) dY = tm2/mAmM) [ - c,(dc,/dY) 

+ (1 + cA) (dc,/dY)] ; 

(2.6) 

of course, M2 is not constant. 
Substituting equation (2.6) into equation (2.4) 

and using equation (2.5), the atomic and the 
“ion-electron” mass fluxes become 

Pc~l/, = - P[DAM + (l/2) CRDARI (dcA/dY) 

+ p[(1/2) DAR(l + cA) - DAMI (WJdYh 

PCR~R = ~[(1/2) (1 + CR) DRA - DA (dc,dJdy) 
- P[(1/2) CADRA + D,,I (dcR/dY). (2.7) 

and A. A. KOVITZ 

Theories dealing with gas transport properties 
consider the binary diffusion coefficient gij 
rather than the multicomponent diffusion co- 
efficient Dij. We, therefore, express equation 
(2.7) in terms of ~ij; this can be done for a 
ternary gas by using (see Hirschfelder et al. [ 181) 

Dr2 = 912fl + ns[(m3/m2)~i~ 

- ~dh~2.3 + n2g13 + @IdI (2.8) 

notice that D,, # Dzl but aI2 = g2r. Now 
substitute equation (2.8) into equation (2.7); the 
resulting expressions for the mass fluxes are in 
lferms of gAR, QAM, QRM, cA and cP In addition 
to being complex, interpretation of these ex- 
pressions is difficult. They can, however, be 
further simplified. 

The binary diffusion coefficient is given in 
terms of the diffusion cross-section Sij by [ 191 

G2ij = (3/S) [7&T/2) (mi + mj)/t?$mj] ‘/TlSij 

(2.9) 

The diffusion cross-sections of ion-atom (S,,) 
and ion-molecule (Sr,) have been calculated by 
Hansen [20] ; he found that SM = SAA. Hence, 
we shall consider SAR = SAA, SRM = SAM Fur- 
thermore, the ratio SAR,KAM was calculated 
from Hansen’s data and found to vary little in 
the range where ionization is present (S_,JSAM 
E 0.577); we shall take this ratio to be 1/J3. 
Then equation (2.9) yields 

9AR/9AM = t1 + cA - cR)/(cA + cR), 

9RM/9AM = (1 + CA - cR)/(l + CR - CA); 

(2.10) 

EAR and 9RM are now related to gAM. Using 
equation (2.10) in equation (2.8) the multi- 
component diffusion coefficients can be ex- 
pressed in terms of QAM, CA, and cR. When these 
coefficients are substituted into equation (2.4), 
the atomic and “ion-electron” mass fluxes are 
obtained. 

The resulting expressions are, however, still 
quite complex. Further simplification is achieved 
by noting that in the range of temperature and 
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pressure we will consider (T c 12 OOO”K, p > 
01 atm) ionization is dominated by dissociation. 
Therefore, ci and higher powers of c, are much 
smaller than c, and c,; the resulting linearized 
(with respect to cR and its derivatives) expres- 
sions for the atomic and the “ion-electron” mass 
fluxes are 

PC,VA = pB,,{ - [l + 24 1 - CA + c: 

+ c;)/(l - CA + dl W,/dy) 
+ [2(c_4 + &/(l - CA + c; 

+ 3dl hb/Jdd, (2.1 la) 

and 

P&T/, = P%4,U241 - c%(l - c,4 

+ c: + 3c:)] (dc,/dy) - [(1 + cJ3/(l - cA 

+ c: + 34)l W,/W) ; (2.1 

the details may be found in [21]. 
At low temperatures, where the gas is dis 

lb) 

so- 
ciated only, c, E 0 and equation (2Jlb) shows 
that pcRVR % 0; the atomic mass flux [equation 
(2.lla)l reduces exactly to that of a dissociated 
gas (see, for example, Clarke [l]). Thus, the 
diffusive mass flux obtained by using Ficks law 
(binary gas) is a special case of equation (2.11). 

The qualitative effect of ionization on the 
species mass fluxes may now be deduced. It is 
readily seen that the polynomials containing c, 
in equation (2.11) are positive and finite for 
0 < cA < 1. First, consider the case when the 

gas is in chemical equilibrium. Start from the 
upper wall (corresponding to the outer region 
of a boundary layer) and move towards the 
lower wall (decreasing y) ; at the “hot” upper 
wall there exist atoms, ions, electrons and a 
negligible number of molecules. Moving away 
from the “hot” upper wall towards the “cool” 
lower wall, electrons and ions recombine form- 
ing atoms ; molecules, however, are not formed 
as fast as atoms because of the high temperature 
that exists in this region. Hence, dc,/dy is 
positive and dc,/dy is negative ; equation (2.1 la) 
indicates that the atomic mass flux is towards 
the upper wall ; the ion-electron mass flux is 
towards the lower wall, as can be seen from 

equation (2.llb). The directions of these fluxes 
persist as we move away from the upper “hot” 
wall until the atom mass fraction reaches a 
maximum; at this position dc,/dy = 0, and if 
dc,/dy # 0 the atom mass flux is still towards 
the upper wall and the “ion-electron” mass flux 
is towards the lower wall. Moving, further, 
towards the “cool lower wall, this position of 
maximum c, is followed by a region where the 
small number of ion-electron particles that may 
be left in the flow are neutralized ; the atoms, by 
then, have started to recombine forming mole- 
cules and, hence, dcddy becomes positive and 
the atomic mass flux is now towards the lower 
wall (see equation 2Jla). At very low tempera- 
tures, close to the lower wall, all atoms have 
recombined leaving only molecules which are 
diffusing towards the upper wall. 

We now compare the above results with the 
case where ionization is suppressed ; as in the 
previous paragraph the flow is assumed to be in 
chemical equilibrium. Near the upper wall the 
temperature is high enough so that the gas is 
completely dissociated. The gas may stay in this 
state in the layer contiguous with the upper wall 
before atoms start to recombine forming mole- 
cules. In this region dc,/dy E 0 and there is no 
atomic mass flux. Moving towards the lower 
wall the temperature decreases until it is low 
enough for atoms to recombine forming mole- 
cules, and dcddy > 0; the atomic mass flux is 
now towards the lower wall. This trend con- 
tinues until all atoms recombine and the gas 
close to the lower wall consists only of molecules 
diffusing back towards the upper wall, there is 
no local maximum in the concentration of 
atomic species, as in the case when ionization is 
included. Thus, ionization introduces an ion- 
electron mass flux diffusing towards the lower 
“cool” wall and causes the atomic mass flux to 
split into two streams, one flowing towards the 
upper wall and the other flowing towards the 
lower wall. 

When no chemical reaction takes place in the 
layer, i.e., the flow is chemically frozen, the 
species conservation equation shows that the 
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mass flux for every kind of particle in the flow is 
constant. If the lower wall is catalytic, mass 
fraction gradients exist in the flow and there are 
atomic and “ion-electron” mass fluxes towards 
the lower wall. When ionization is suppressed, 
the upper wall is generating atoms only, and the 
flow is devoid of any ionized particles. 

3. PARTICLE DISTRIBUTIONS 

3.1 Particle concentration in the gas phase 

Because f ci = 1, the mass fraction distribu- 
i=l 

tion of only two species need be obtained; those 
of atoms and ion-electron particles are con- 
sidered here. Furthermore, only the two limiting 
cases of chemical equilibrium and frozen flow 
will be discussed. Chemical equilibrium flow and 
chemically frozen flow serve as limits for the 
complex chemically non-equilibrium flow. These 
two cases have been used in earlier studies [l, 
141 and are once more utilized here. 

First consider the case when the gas phase is 
in chemical equilibrium. It shall be assumed that 
only the following reactions take place ; 

particles + A2 P 2A + particles, 

(3.1) cA(aY CR) = c ai(a) ck? 

particles + A P A+ + E + particles. 

The laws of mass action for the reactions of 
equation (3.1) are well known (see Drellishak 
[22], for example) and for constant pressure 
Couette flow may be written as 

n:ln, = IL (3.2) 

nrnE/nA = K, 

where nA2 = nM, n: = n,. Since nR = n, = nE 
and p = nkT, equation (3.2) yields, 

a%; = 1 + 2c, - 4c,c, - 3c;, (3.3) 

c; = [[CA + c: + 3c,c,], (3.4) 

where 

a = (1 + 4p/kTK,)*, [ = kTKI/2p. 

Equations (3.3) and (3.4) are to be solved for 
cA and c, in terms of a and [. Exact analytical 
solutions cannot be found. However, solutions 
for cA and c, can be obtained in terms of a and 
< by taking advantage of the small order of 
magnitude of cP It can be seen from equation 
(3.4) that small cR implies small [. 

Since cA and cR vary between zero and unity 
the only physical roots of equations (3.3) and 
(3.4), respectively, are 

cA = ( 1/2a2) [ -4c, + 2a(l + 2c, - 3~; 

+ 4&a2)+], 

CR = (1/2) {3ic, + [(3icA)2 + 4i(cA + c:)] ‘} ; 

expanding in terms of cR and [ respectively one 
gets 

cA = l/a + (l/a - 2/a2) cR 

+ (2/a3 - 7/4a) ci + . . . , 

CR = (CA + C;)‘[+ + (3/2) CA5 

+ (9/8) c:(cA + c:)-i i* 

- (l/8) [(9/4) c:(cA + c:)-~I~ (CA 
+ cp p + . . . . 

(3.5) 

(3.6) 

Equations (3.5) and (3.6) express cA and CR as 

and 

We wish to obtain c, and cR as functions of a 
and i. This is done by constructing a Taylor’s 
series expansion for cA(a, [*) and c,(a, it); the 
required coefficients may be computed from 
equations (3.5) and (3.6); one obtains 

c, = l/a + (l/a - 2/a2) (l/a + 1/a2)*it 

+ [(l/a - 2/a’) . (1 + 2/a) + 3/a 

+ (2/a3 - 7/4a)(l/a + 1/a2)] i + . . . , (3.7) 

CR = (l/a + l/a2)“[” + [(l/a - 2/a2) (1 + 2/a) 

+ 3/a] L’ + . . , (3.8) 

where equations (3.7) and (3.8) are valid for [ 
sufficiently small. 
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It may be noted that when the gas is disso- 
ciated only, c = 0; thus, c, = 0 and equation 
(3.7) gives cA = l/a; which is the case for a 
dissociating diatomic gas [23]. 

Having obtained the mass fractions in terms 
of a and [, which are functions of p and T, the 
mass fraction distribution in a Couette (constant 
pressure) flow can be evaluated once the 
temperature distribution is obtained. This can 
be achieved, as shall be described later, by 
solving equations (2.2) and (2.3). 

When the characteristic time for chemical 
reaction is much smaller than a characteristic 
time for diffusion the chemical reactions in the 
gas phase may be neglected; the flow is then 
called chemically frozen. The species conserva- 
tion equation becomes d(pci~)/dy = 0 from 
which 

d(pc,I’Jdy = d(pc,T/,)/dy = 0. (3.9) 

For convenience in integrating equations (2.11) 
and (3.9) we change the independem variable 
from y to u (noting that pdu/dy = r,,, = con- 
stant) ; integrating once, we obtain 

(@AM/d{ L1 + 2cR(1 - cR + c: + c:)/(l - CA 

+ c: + 3cJ (dc,/du) - [2(cA + c;)/( 1 - cA 

+ c; + 3c:)] (dc,/du)} = K;, (3.10) 

WAM/PN(l + cA)3/(1 - CA + 4 
+ 3c:)] (dc,/du) - [2(1 - c;)/(1 - cA + c:, 

+ c:)] (dc,/du)} = K;. (3.11) 

Together with Fay and Kemp [14] define a 
Lewis number L = n,mA9AMcp,/k-,, which is 
also considered constant (L = 0.6) in this 
analysis. The viscosity of the ionized gas [see 
Appendix, equation (A.7)] is taken to be 

/J = ~J0.82 + l.l8(c, + cR)]/(l + cA + 3c,). 

When this is substituted into equations (3.10) 

and (3.1 l), and after linearizing with respect to 
cR, they become 

{(l + cA) + c,[3 + 2(1 - CA + cf, + ci)/(1 

- 2c, + 34)l) (dc,/du) - 2[(c, -+ cp;)/(l 

- 2, + 3c:)] (dc,/du) = K,[0.82 

+ 1.18c,)(l + cA + cR) + l.l8c,(l + c,)], 

(3.12) 

and 

[(I + CA)3/(1 - k, + 3c:)] (dc,/du) 

- 2[c,(1 - C;)/(l - 2c, + 3c;)](dc,/du) 

= K,[0.82 + 1.18 cA) (1 + cA + cR) 

+ 1.18 c,(1 + CA)] (3.13) 

K, = K;/3Land Kz e K;/3L. 

To obtain the atom and ion-electron particle 
distributions one must solve, simultaneously, 
equations (3.12) and (3.13). Analytical solutions 
will now be developed in such a manner as to 
take advantage of the assumption of small cR. 
The form of solution is taken to be 

CA = CA0 + &cAl + &‘cAz + . . . and CR = &CR1 

+ E2CR2 + . ..) 

where E is a symbol denoting the order of 
magnitude of the term it is associated with; E 
will be assumed small enough so that 

cA = cAO + =Al, (3.14) 
CR = ECR1. 

Inspection of equations (3.12) and (3.13) 
suggests that to order E, K1 = K,, + .sKll, 
and K, = sKzl. Substituting these constants 
as well as equations (3.14) into equations (3.12) 
and (3.13) the governing equations for cA,,, .scRl 
and- &CA1 become the consecutive set of linear 
differential equations 
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dc,,/du = K,,(O*82 + 1.18 c,,), (3.15a) 

d(scJdcA0 - (1 - c,,)ecRJ(l + c/J2 = sK,,K,-,‘(l - 2c,, + &J/(1 + cAJ2, (3.15b) 

and 

d(scJdcAO - 1.18 sc,,/(O*82 + 1.18 cAO) = .sK,,/K,, + 2sK,,K&c,, + c&,)/(1 + c,,J3 

+ sc,,[1.18/(0*82 + 1.18 c,& - 2/(1 + cA,,) - 2(1 + c&J/(1 + cA,J2]. (3.1%) 

Equation (3.15a) has been used to obtain equation (3.15b) and both equations (3.15a) and (3.15b) 
were used to arrive at equation (3.15~). The boundary conditions for cAO, scAl and scRl are expressed 
as follows : 

at y = 0, u = 0, cAO = cAoW, scAl = scAIW, scRl = scRIW; 

aty=&u=u c 6, A,, = cAO& scA1 = scA18, scR1 = &CR16 

The solutions for equation (3.15) are 

CA‘, = (0.695 + cAow) [(O-82 + 1.18 c,,,)/(O~82 + 1.18 cAo,)]u/u6 - 0.695, 

ECRl - - &K2lK;,‘F + &&{exp. [-d/(1 + cAo)]}/(l + cAC)2, 

(3.16a) 

(3.16b) 

where 

&cAi = (0.82 + 1.18 CA,,) (&Kg + cK,,I + EK@~ - EK~~K;~@~) - &cRl, (3.16~) 

KI, = &ln [(0*82 + 1.18 cAoJ/(O*82 + 1.18 c~,,,)}, 

d 

F = (1 + cAO) - 2 - 2/(1 + cA0) - 8(1 + cAO)- ’ exp. [ -4/( 1 + CA,)} 

x [h(l + cAo) - k 4”/(1 + cAO)n nn!], 
n=l 

Z = (1.18 Klo)-’ ln(0.82 + 1.18 CA,), 

@i = (1.18)-l f (-1)“(4/n!) T [2(0.36/l-18)“@ + s + 3)-‘(1 + cAO)-n-S-3], 
n=O s=o 

@2 = (l-18)-’ ln(0.82 + 1.18 cAo) - (8/0.36) In [(0.82 + 1.18 cAo)/(l + cAO)] 

+ (16/1.18) “z. (- 1)” (4”/n!) SE0 (036/l.18)“~~l (4”‘lmmV 

x ([ln(l + cao) + (n + s + 2)-‘]/(n + s + 2)(1 + c,~J+~+~ 

&K2 1, &K4, &Kg, and cKll are complicated, but 
known, functions of the upper plate velocity 
and concentrations at the boundaries. They are 
given in [21]. The evaluation of cAod, cAow, 
&cA1& &cAi,,,, cAlw, cRd and cRw shall be discussed. 

Equation (3.16) represents a closed form 
solution for the particle mass fractions in the 

- (n + s + m + 2)-l (1 + cA0)-n+s+m+2}. 

frozen Couette flow of a partially ionized 
symmetric diatomic gas 

It is now appropriate to make some comments 
and comparisons with the special case where 
ionization is suppressed. Consider first the case 
of chemical equilibrium flow. At low tempera- 
tures where the gas is dissociated only, cR = 0, 
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and equation (3.5) reduces to cA = l/a, which is 
exactly that of a dissociated gas. On the other 
hand, at very high temperatures (e.g., Nz at 
p = 1 atm., T 2 9000°K) a z 1, and equation 
(3.5) shows that cA g 1 - cR. Between these 
temperatures the atom mass fraction must be 
expressed by equation (3.5). Some authors (see 
Hansen [20] and Fenster [15] assume that all 
molecules dissociate into atoms before atoms 
start to ionize. The above comments show how 
this assumption is good only at low and high 
temperatures and that equation (3.5) is more 
general. 

For the frozen flow case equation (3.16a) is 
exactly that for the atom distribution if ioniza- 
tion is suppressed (see [lo]). Hence, ecAl 

represents the change in atom concentration 
due to ionization. This result shall be used later 
when evaluating boundary conditions at the 
upper wall for the numerical examples presented 
in this paper. 

3.2 Particle concentrations at the boundaries 
When the flow is in chemical equilibrium 

particle mass fractions in the gas phase are those 
corresponding to their equilibrium values as 
determined by the local temperature, i.e., ci = 
Ci,(T). At the walls the particle mass fractions 
depend upon the catalyticity of the wall surface. 
That is, the particle concentrations at the walls 
are not necessarily those corresponding to the 
equilibrium composition. A transition region is, 
therefore, present. This transition usually takes 
place, however, in a negligibly thin layer such 
that the mass fractions at the boundaries can be 
assumed to correspond to the equilibrium com- 
position at the prescribed wall temperatures (a 
conventional assumption). 

The frozen flow case must, however, be 
treated differently because species concentration 
at the walls influences the species distribution 
throughout the gas. The general case where both 
walls are treated as “strictly” solid surfaces, and 
where opposing heterogeneous reactions may 
occur, shall not be presented here ; for treatment 
of this general case see [21]. We shall here 

consider the particle concentrations at the upper 
wall to correspond to the chemical equilibrium 
composition at the prescribed upper wall tem- 
perature. This assumption simulates a boundary 
layer flow whose free stream is a dissociating and 
ionizing diatomic gas in chemical equilibrium. 
Thus, cAd = cAed and cRa = cRe& It was noted 
before that cAO corresponds to the case where 
the gas is dissociated only; hence, the boundary 
conditions on concentrations at the upper wall 
can be written as 

cAOd = l/a, = (1 + 4p/kT,KJt, (3.17) 

ECRld = (1/aa - 2/ai)(1/aa + l/ai)*& 

(3.18) 

ECRld = (l/a, + W3CB. (3.19) 

The particle concentrations at the lower wall 
shall be evaluated by extension of the argument 
presented by Clarke and McChesney [24] for a 
dissociated gas. Define rA,,, as the ratio of the 
number of atoms converted into molecules to 
the total number of atoms striking the wall per 
unit area per unit time ; also introduce rRw as 
the ratio of the number of ion-electron particles 
converted into neutral particles to the total 
number of ion-electron particles striking the 
wall per unit area per unit time. In general, the 
atom recombination reaction is opposed by the 
corresponding heterogeneous dissociation re- 
action, and the neutralization reaction is opp- 
osed by the heterogeneous ionization reaction ; 
for this more general treatment see [21]. 
Here we shall consider the lower wall to be 
“cool” such that the heterogeneous dissociation 
and ionization reactions can be neglected. 
Hence, for the perfect gas mixture considered 
here (p = AT), the atomic and “ion-electron” 
mass fluxes into the “cool” lower wall are, 
respectively (see [21]). 

- PC‘4~‘lw = 2r,~,~P [mA/2~Q,JtK1 + CAw 
+ 3cRw)~ (3.20) 

- PCRU~ = 2rR,cRwP [m_&~kLl*/U + CAM 
+ 3cRw) (3.21) 
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where the proper number density, n = nM + 

nA + nI + nh has been used to determine p 
(which depends upon the random motion of all 
the species, not their diffusion velocities). Now 
the constants of integration of equations (3.10) 
and (3.11) are introduced : 

-PcAUW = z,K; = 3Lz,K,, (3.22) 

-PcR~Rlw = z,K; = 3Lr,K,. (3.23) 

Substituting cAw = cAOw + scAlw, cRw = scRlw, 
Kl = K,, + .sKll and Kz = cKZl into equa- 
tions (3.22) and (3.23) and equating terms of the 
same order of magnitude we obtain 

K,, = (4/3) rAwcAOwP(mA/27lkTw)‘/LP6U~Cf(l 

+ cAOw), (3.24) 

sKZl = (4/3)r,,&C,,,~mA/2xkT,)f/LPY~Cs(l 

and 

+ CAOw )t (3.25) 

EK 11 = (4/3) rAw(&CAlw 

- 3ECRlwCAOw) ph/2~kT,)*/LPaC 1 

+ cAOw) 
i 

3 (3.26) 

where we have introduced the coefficient of skin 
friction, C, = r,/($ p,&. Equation (3.24) and 
(3.25) and (3.26) together with the expressions 
for Klo, &KZl and &Kll, noted after equation 
(3.16) may be solved for CA&,,, &cAiw and &cRlw in 
terms of C,, T, T,, p, L and the equilibrium 
concentrations at the upper wall. Thus, we have 
obtained all the necessary boundary conditons 
on concentration. The method of evaluating the 
concentrations at the boundaries shall be dis- 
cussed later. We notice, however, that the con- 
centrations at the lower wall depend on the 
catalyticity of the wall, Ti,,,. In general, the value 
of Iiw may be anywhere from Ii,,, = 0 to Ii,,, = 
1. We shall, however, limit our analysis to the 
two extreme cases of non-catalytic wall (r_& = 
r Rw = 0) and fully-catalytic wall (r,,,, = rRw 
= 1). In the case of a non-catalytic wall it can be 
shown that all concentrations are constant 

throughout the layer [21]. 

4. HEAT TRANSFER AND SKIN FRICTION 

The heat transfer rate (-q,,,) can be obtained 
by integrating the energy equation (equation 2.3) 
and evaluating the constant of integration at 
the wall ; 

xCdT/dy) - ~7 &K + ~1 [4U2/2)ldYl = -4, 

(4.1) 

Using h = C c,h, with p = constant this becomes 

dh/dY - C [Mdddy) + (pRr/Ip) kiV1 

+ Prf[d(u2/2) dyl = - q,Prfl~, (4.2) 

where Prf = pcpf/‘c is the frozen Prandtl num- 
ber, considered constant?, in this analysis ; 
cPf = T cicpi is the “frozen” specific heat of the 

gas mixture. Integrating from y = 0, using 

J! dy’/p = u/r,, replacing pin by equations (2.1 la) 

ind (2.11b) and noting that ht z h, and h, - 
hu = ht + h’, + c,,T (see Appendix), we ob- 
tain 

h-h,+ r(R,-TR,)dc:,+ r(R, 
CAW CRW 

+ TR,)dcX + Pr,Ju2/2) 

= - qwPrfuI~w, (4.3) 

where R,, Rz, R,, and R4 are known functions 
of cA and cs, and are proportional to @A&//pu. 
Carrying the integration to y = 6, equation (4.3) 
yields 

- 4, = (l/2) (pau,Cf/PrI) Vi, - h, 
fAd CR6 

+ c,s, (R, - T&k&, + j W3 + TR,) dc, 
CRW 

+ (l/2) Pr&]. (4.4) 

The effect of ionization on the heat transfer rate 
( -q,,,) is most apparent in the second integral of 
equation (4.4) ; when 

CA6 
cR = 0, S (R, - TRA dc, 

Cl, 

t The frozen Prandtl number has been evaluated in [21] 
for 500°K -c T < 12000°K where it is shown to vary 
between 0.4 < Pr, < 07: it is taken to be 0.6 in this study. 
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reduces to 

c.48 

then equation (4.4) becomes exactly that ob- 
tained by Enkenhus [3] for a dissociated 
diatomic gas. One also notes that the ion- 
electron particles transfer their dissociation and 
ionization energy as well as the translational 
energy (cIDAT) which is due to electrons (see 
Appendix). The last term in equation (4.4) is, of 
course, the viscous heating term. 

When equations (4.3) and (4.4) are combined 
a useful relation between temperature, mass 
fraetions and velocity results; 

h-h,+ r(R,-TR,)dcA+ r(R, 
CAW CRW 

+ TR,) dc, + (l/2) Pr&u/~~)~ 
CA6 

= (u/t+) [ha - h, + s (R, - TR,) dc, 
CAw 

CRd 
+ 1 (R3 + TR,) dc, + (l/2) Prpi]. (4.5) 

CRw 

This expression, when using the mass fraction- 
temperature relation (equations 3.7 and 3.8) for 
chemical equilibrium flow or the mass fraction- 
velocity relation, equation (3.16) for the frozen 
flow, yields a useful temperature-velocity re- 
lation. The use of equation (4.5) in solving the 
Couette flow problem shall be discussed later. 

The skin friction coefficient can be obtained 
by integrating equation (2.2) using C, = T,,,/ 

(l/2) pan,? and Re, = P~u,~/~,; 

C, = (2/Re,J $ (p/pa) d(uM. (4.6) 

The recovery enthalpy is defined as the value 
of h, when q,,, = 0 (adiabatic wall); from equa- 
tion (4.4) we obtain 

CA6 
h, = h, + j (R, - TR,) dc, 

CAr 
CR6 

+ c., (R3 + TR,) dc, + (l/2) Pr,& (4.7) 

where c Al, c,, are respectively the atom and the 
ion-electron mass fractions at the adiabatic wall. 

Now define the enthalpy recovery factor as 

0 = (h, - &)/U/2) n:; from equation (4.7) we 
find 

8 = Pr/ + (2/u;) [ 1 (R, - TR,) dc, 
c_4r 

cd 

+ j tR3 + TR,) dd. 
‘-XV 

(4.8) 

In additon to its dependence on atom mass 
fractions at the walls, we see that the recovery 
enthalpy depends also on the ion-electron mass 
fraction at the wall. When both cA = 0 and cR 
= 0, equation (4.8) yields the well known result 
0 = Prf. 

A relationship between skin friction and the 
heat transfer coefficient, defined by St = - q,/ 
paudh, - h,), may be obtained from equation 
(4.4) by using equation (4.7); it is 

fAr 
St/C, = (1/2Prl) (1 + (h, - h,))’ [ j (R, 

CAW 

- TR,)dc, + s (R3 + TR,)dc,]}. (4.9) 
CRW 

As was found before for the dissociated gas [3], 
the simple relation St/C, = l/2 Prf does not 
hold any longer when the gas is ionized. 

A parameter that is useful for expressing the 
heat transfer rate is the Nusselt number defined 
by Nu = StPr,Re,; it is obtained from equation 
(4.9) as 

CA, 

Nu = (1/2)CfRe,{ 1 + (h, - h,)-’ [ f (R, 

CRr 

- TR,)dc, + s (R3 + TR,) dc,]}. 
CRW 

(4.10) 

5. COMPLETE FLOW SOLUTIONS, 
NUMERICAL CALCULATIONS AND 

DISCUSSIONS OF THE RESULTS 

5.1 Chemical equilibriumflo w 
When the gas is in chemical equilibrium the 

particles mass fractions are functions of tempera- 
ture only and equation (4.5) can be written as 
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h - h, + s’ [(R, - T’&) (dc,/dT’) + (R3 + T’R,) (dc,/dT’)] dT’ + (l/2) Pr&(u/~~)~ 
r, 

= (u/ug) {h, - h, + % [(R, - TR,) (dc,/dT) + (IX3 + T&) (dc,/dT)] dT + (l/2) Pr&}. 

(5.1) 

Using the expression for h, obtained in the appendix in terms of cA, cR and T, and using equations 
(3.7) and (3.8), a relation between T and u/u, is obtained : 

h - h, + ‘s’ (R, - TR2) dc, + r (R3 + TR,) dc, + (+) P~,u;(u/u,)~ 
CAW CRW 

CA6 CR6 
= (%) [h, - h, + s (R, - 7-R,) dc, + j (& + TRJ dc, + (tV’++l, 

fAW CRW 
where 

R, = (@,&‘rr/~) {h:[l + 2c,( 1 - cA + c: + c:)/( 1 - cA + c; + 3c;)] 

- (h; + h’,) c,(l - ci)/(l - CA + c; + 3ci)) - II;, 

R2 = c,,W,,~~/l~) ~(1 - c:)/U - CA + c: + 3c:), 

R, = (~@,,Pr~l~) I(% + h’,) (1 + c/#/(1 - CA + c; + 3~:) 
- 2$Xc,4 + ci)/(l - CA + c: + 3c$] - (h; + I&), 

R, = c,~(&&‘~~//J) (1 + cjJ3/( 1 - c/, + c: + 3~;). 

Having obtained the T vs. u/u, relationship, 
the skin friction is obtained by integrating 
equation (4.6). The velocity distribution, and 
consequently the temperature distribution, is 
obtained from 

y/a = CWe,Cf) [ (4~~) W4’, (5.2) 

by iteration from an equation resulting from 
equating equation (3.24) with K,, following 
equation (3.16~). Then scAlw and cRw are 
calculated from their respective equations men- 
tioned earlier. A T vs. u/u, relationship is then 
obtained by assuming an initial relation and 
iterating by using equation (4.5). This relation- 
ship is then used to integrate the equation 

which results from integration of equation (2) 
from y = 0. 

The recovery temperature is obtained by a 
trial and error procedure based on equation 
(A. 1) of the Appendix. The recovery temperature 
is then used in equations (4.8) and (4.10) to 
obtain the enthalpy recovery factor and the 
Nusselt number respectively. 

5.2 Frozenflo w 
Particle concentrations at the upper wall are 

obtained from equations (3.17), (3.18) and (3.19). 
A value for C, is assumed and cAw is calculated 

C, = CWeJ i (uh) Wua) 

which results from equation (5.2). The new value 
of C, is then compared with the assumed C, and 
the whole process is repeated until convergence 
is achieved. For further details see [21]. 

The recovery temperature is computed by 
assuming a wall temperature T, ; boundary 
concentrations and a temperature vs. velocity 
relation are then obtained. This T vs. u/u8 
relation is then used in equation (4.7) written as 
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- (hff + 4) CRr + _j [(RI - TRddc~/Wu,) 

+ (R3 + T&l %J4u/u,)l d(u/u,)) 
x [(O-7 + 0.2 $J (1 - c_& - C&J + CA, 

+ 2c,,] - l 

The resulting recovery temperature is used 
again and the whole process is repeated until T, 
converges. Nusselt number and the recovery 
enthalpy factor are obtained from equations 
(4.10) and (4.8). 

5.3 Numerical calculations and discussion of the 
results 

Calculations performed here are for nitrogen, 
which has a dissociation energy of 9.756 eV/ 
atom. The vibrational temperature for nitrogen 
is T, = 3400°K and the value for L was found 
by Fay and Kemp to be approximately 0.6. The 
upper wall temperature is taken to be 12000°K 
and the lower wall temperature is 500°K. The 
results presented here in graphical form are 
compared on the same graphs with the results 
obtained for the flow, if ionization were not to 
occur; that is, when ionization is artifically 
suppressed. The reason for doing so is that we 
wish to know explicitly what are the effects of 
ionization on the flow. The flow with ionization 
suppressed was thus treated under the same 
boundary conditions, using the same thermo- 
dynamic and transport properties, except for cR 
which was set equal to zero. 

All the numerical calculations were carried 
out on a CDC-3400 digital computer.? 

The velocity distribution is shown in Fig. 1; 
the steeper velocity gradient of the ionized gas 
flow is due to the reduction in the viscosity of 
the diatomic gas when it becomes ionized. 

The temperature distribution is shown in 
Fig. 2. When the gas phase is in chemical 
equilibrium the temperature gradient near the 

t The authors gratefully acknowledge the machine time 
granted by the Vogelback Computing Center of North- 
Western University. 

For frozen flow, 8=3xlcrsn 

Ionized nitmgen. 

Ionizati supreased: 

0 02 O-4 0.6 

Normalized WI.. u/@ 

-I I.0 

FIG. 1. Velocity distribution for the couatte flow of nitrogen; 
fully-catalytic wall for the frozen flow cases. 

“hot” upper wall is small. This indicates that 
heat transfer in this region is mainly due to 
diffusion, for as we move towards the lower 
wall ionized particles are neutralized, releasing 
their ionization energy. Part of this energy is 
carried by thermal conduction and we note that 
the temperature gradient becomes steeper as 
the number of ionized particles decreases. When 
most of the ionized particles have been neutral- 
ized to atoms and these have now reached a 
maximum concentration, the energy released 
by neutralization is carried primarily by thermal 
conduction, and results in the steep temperature 
gradient seen at T/T, g 14. This is followed, 
moving towards the lower wall, by a region 
where atoms are now diffusing towards the 
lower wall, as explained earlier. The energy 
transfer is now by thermal conduction and atom 
diffusion, hence, the reduction in the tempera- 
ture gradient. Close to the lower wall most 
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r, = 12000°K 

,o=O~latm, Pr, =06 I 

Frozen flow, 8=3xUh I’ 
/ 

Ionization supressed: /’ 

Ckm.equil. flow 4 

Frozen flow. / 

Temperature, r/T, 

FIG. 2. Temperature distribution for the couette flow of 
nitrogen: fully-catalytic wall for the frozen flow cases. 

5 =12000°K.~ =5OO*K 

- us =5OQm/s 
p =04atm.P1=06 

o,8_ Frozen flow. 8=3x&m 

0 0.2 0.4 0.6 0.8 IO 

Mass fraction. c 

FIG. 3. Specie mass fraction distributions for the couette 
flow of nitrogen; fully-catalytic wall for the frozen flow 

cases. 
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atoms have recombined into molecules and 
released their dissociation energy. Energy trans- 
fer in this region is by thermal conduction alone ; 
this explains the steep temperature gradient near 
the lower wall. In comparison with the case 
where ionization is suppressed one can then 
expect ionization to increase the rate of heat 
transfer. 

One may also note the linear temperature 
gradient near the upper wall when ionization is 
suppressed. This is because the gas in this 
region has reached full dissociation, and energy 
is transferred by thermal conduction alone. 

When the gas phase is chemically frozen, and 
the lower wall is fully catalytic, the temperature 
distribution exhibits a maximum at a short 
distance from the “hot” wall. This is because 
the total heat flux is constant with y, and near 
the upper wall the heat flux is carried mainly by 
diffusion such that excess heat generated by 
viscous dissipation must be carried back to the 
upper wall by thermal conduction. This may be 
amplified as follows: by using equations (A.3) 
and (A.4), equation (4.1) can be written as 

IC dT/dy + CIT + uz, = Cz, 

where the constants, though different in magne- 
tude, are positive since qw < 0. At the lower 
wall the sign of (dT/dy), depends on T, and the 
constants. In the computations carried out here 
(dT/dy), is found to be positive. As y increases 
(and u increases) T and K increase and dT/dy 
must decrease. This continues until dT/dy = 0. 
A further increase in u causes dT/dy to become 
negative. Further details may be found in [21]. 

The mass fraction distributions are shown in 
Fig. 3. As explained previously, the atom mass 
fraction, when the gas phase is in chemical 
equilibrium reached a maximum somewhere 
in the flow layer. This position marks the change 
in the direction of atomic mass flux. When 
ionization is suppressed the atom mass fraction 
reaches unity at some distance away from the 
“hot” wall (there is no local maximum ; see 
Fig. 3). Due to the low pressure (p = O-1 atm) 
and the requirement of chemical equilibrium at 

D 

the upper wall, c, is not much smaller than cA 
for this particular numerical example. Thus, the 
linearized solution is a poorer approximation 
near the upper wall. 

Ionization increases the value of Nusselt 
number, for chemical equilibrium flow, by 2.8 
times as much as its value when ionization is 
suppressed. This is shown in Fig. 4. However, 
one must note that the increase in the Nusselt 
number is partly due to the increase in the 
Reynolds number which, in turn, is due to the 
decrease in the viscosity. Calculations were 
carried out for the same Re, (for ionized and 
suppressed ionization flows); we found ioniza- 
tion to increase Nu at T, = 12 000°K by 100 per 

p =Oi ahn, R, =0,6 
I( 

0.9- 

t 

i 0.6- 

4 
2 
* 0.7- 

i?i 
B 

Q6- 

0.5 - 

0.4 - 

Ionized nifrogen: 
Chem. equil. flow 

\ Frozen flow, 8=3xd3m 

Frozen flow, 

0.3h ’ I I t n I ’ ’ I 
4 6 12 16 20 

Temperohre. s/c 

! 
FIG. 4. Effect of ionization on heat transfer for the couette 
flow of nitrogen; fully-catalytic wall for the frozen flow 

cases. 

cent at T, = 11000°K by 49 per cent and at 
Ta = 10 000°K by 20 per cent; that is, the heat 
transfer rate increases with the increase in the 
degree of ionization. When the gas phase is 
chemically frozen ionization also increases the 
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heat transfer rate, but not as much as in chemical 
equilibrium flow. This is because near the lower 
wall the ion-electron mass fraction is significant 
(see discussion concerning Fig. 2), and part of 
the ionization energy is retained ; hence, energy 
is not completely recovered. 

concentration at the adiabatic wall, i.e., cRr > 
cR6 but cAr < cAa: however, since atoms are 

dominant in the flow, 9 starts to increase. At 
very high upper wall temperatures the energy 
contribution due to viscous dissipation is 
relatively small so that cAd E cAr and cR6 = cRI; 

r 
T,=500°K 

us= 500 m/s 

p=O.I atm 

Pq=O,6 

i 

I lanization 
‘/ 

supressed 

FIG. 5. Effect of ionization on enthalpy recovery factor for 
the couette flow of nitrogen; chemical-equilibrium flow. 

The effect of ionization on the enthalpy 
recovery factor is shown in Figs. 5 and 6 res- 
pectively, for chemical equilibrium and frozen 
flow. The behaviour of this parameter can be 
best explained with the help of equation (4.8). 
When the flow is in chemical equilibrium and 
at low values of the upper wall temperature, 
C A6 = CAr = 0 and cRd = cR = 0; then 8 = Prf. 
With increase in T, dissociation occurs, but 
cAr > cAd due to viscous heating (cR is still zero), 
and 13 starts to decrease. At higher temperatures 
where ionization occurs at the upper wall, 
viscous dissipation may increase the ion-electron 

40- , , ( , 

r, ~500°K 

30- ug = 500 m/s 

p=o l&l 

20. P1,=06 

8:3rIO?n 

IO- 

-3O- 

40. 
Ionlzatlon 
supressed _ 

: 
-50 - ‘1 \ 

‘. 
----______ 

FIG. 6. Effect of ionization on enthalpy recovery factor for 
the couetk flow of nitrogen; frozen flow with fully- 

catalytic wall. 

thus 8 approaches Prf again. When the flow is 
chemically frozen and the upper wall is at low 
temperatures, 8 is also equal to Pr,. At tempera- 
tures where ionization occurs at the upper wall, 
it was found that ?; > T, yet the catalytic wall 
reduces the particle mass fractions such that 
h, < h,; this causes 8 to decrease. 

The effect of ionization on the parameter 
(l/2) Re,C, is shown in Fig. 7. The increase in 
this parameter is mainly due to the increase in 
Re,; that is, ionization produces a small effect 
on the skin friction coefficient. 
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FIG. 7. Effect of ionization on skin friction for the couette 
flow of nitrogen; fully-catalytic wall for the frozen flow case. 

Foy ond Kemp- Nz [14] 

Temperature, TX II.+K 

FIG. 8. Equilibrium conductivity of nitrogen. 

Figure 8 shows the “equilibrium” thermal 
conductivity calculated by the model developed 
in this paper. In the same figure Burhorn’s [25] 
experimental points, Fay and Kemp’s [14] 
calculations and Hansen’s [20] calculations are 
presented. The present model appears to give 
better agreement with the experimental results 
except for 5000°K < T d 7000°K. This is be- 
cause we have used an approximate formula for 
the ionization equilibrium constant given by 
Duclos et al. [26] (see Appendix). This formula 
over-estimates the number of ionized particles 
in the flow for T < 7000”K, by a maximum of 
15 per cent. Our reasonable agreement with 
Burhorn’s results lends support to the model 
and the theory developed in this paper. 

Fay and Kemp’s “equilibrium” thermal con- 
ductivity calculated by use of their theory that 
neglected radiation, was compared by them, and 

found in good agreement, with Yos “equili- 
brium” thermal conductivity calculated by a 
theory that included radiation. When radiation 
is neglected the value of “equilibrium” thermal 
conductivity is large and Yos’ calculations with 
radiation terms removed are then in good 
agreement with Maecker’s [27] measurements 
(note that Maecker’s measurements agree with 
Burhorn’s measurements). Thus, one can con- 
clude that use of Fay and Kemp’s binary model 
would result in an underestimate in the calcula- 
tion of the “equilibrium” thermal conductivity 
as well as the heat transfer rate. 

As the pressure increases ionization is reduced 
and the ion-electron mass fractions become 
much smaller than the atom mass fraction in 
which case the theory of this paper gives a much 
better approximation. Also we may note that 
the theory of this paper gives better approxima- 
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tions for smaller upper wall temperatures. For 
the case shown here (T, = 12 OOO”K, p = 0.1 
atm), the approximations become less valid near 
the upper wall. 

2. C. R. ILLINGWORTH, Some solutions of the equation of 
flow of a viscous compressible fluid, Cambridge Phil. 
Sec. Proc. 46.469478 (1950). 

Hansen’s calculations, one may note, are for 
air which at high temperature may form NO; 
this was neglected by Hansen and this theory 
was developed under the assumption that 
oxygen and nitrogen molecules are completely 
dissociated before ionization commences. Also, 
when the gas is ionized his mixture consisted of 
N, N’. 0, Of and E. The assumption of inde- 
pendent dissociation and ionization reactions 
may be the cause of the low “equilibrium” 
thermal conductivity for T < 9000°K as shown 
in Fig. 8. 

3. K. R. ENKENHUS. The effect of variable Lewis number 
on heat transfer in a dissociated gas, U.S. Naval 
Ordnance Lab., NOLTR 63-145, July 1963. 

4. H. W. LIEPMANN and 2. 0. BLEVISS, The effects of 
dissociation and ionization on compressible Couette 
flow, Douglas Aircraft Company Report No. SM- 
19831. Santa Monica Div., May 1956. 

5. Z. 0. BLEVISS, Magnetogasdynamics of hypersonic 
Couette flow, J. Aero/Space Sci. 25,601-615 (1958). 

6. Z. 0. BLEVISS, The effects of combined electric and 
magnetic fields on hypersonic Couette flow, Douglas 
Aircraft Company Report No. SM-23314, Santa 
Monica Div., October. 1958. 

7. PAUL M. CHUNG. Electrical characteristics of Couette 
and stagnation boundary-layer flow of a weakly 
ionized gases, Phys. Fluid 7. 1 lo-120 (1964). 

8. 

9. 

6. CONCLUSIONS 

(1) The effects of diffusion in partially ionized 
symmetric diatomic gases may be accounted 
for by treating the fluid as a ternary gas mixture 
containing molecules, atoms, and ion-electron 
species. 

10. 

Il. 

12. 

(2) In addition to the atomic mass flux. 
ionization produces an ion-electron mass flux 
flowing towards the “cool’ wall ; when the gas 

phase is in chemical equilibrium ionization 
causes the atomic mass flux to split into two 
streams flowing towards the “cool” wall and 
the “hot” wall. 

13. 

14. 

15. 
(3) When the gas is thermally ionized higher 

temperatures are found in most of the flow layer 
as compared with the results when ionization is 
suppressed. 

16. 

17. 

(4) The rate of heat transfer increases with the 
degree of ionization and is larger when the gas 
phase is in chemical equilibrium than when it is 
chemically frozen. 

(5) The effects of ionization cannot be reason- 
ably estimated by extrapolation of results 
obtained by suppressing ionization. 

18. 
19. 

20. 

21. 

22. 
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APPENDIX 

Therrno~,~~~rn~c and Transport properties 

The specific heats of the different species of 
the ionized diatomic gas mixture were given by 
Fay and Kemp [ 141; from these we calculated 
the enthalpy of the gas mixture as [21] 

i=3 

h = c C&&i = [(O-7 + o-2 I//) (1 - CA - CR) 
i=l 

+ cA + 2&J c,,T + H:(c,, + c,J + h;c,. 

(A.1) 

and 

hA - t:, = h; + c,,T(O*3 - 0.2 I,@; (AL?) 

where 

$ = (7XW[exp.(T,lT) - 11. 
The quantity c,,T(O+3 - O-2 I,@ was calculated 
for nitrogen and oxygen up to T = 12000°K 
and found to have a maximum of 0.06 ht ; 
hence, we considered 

h, - h, N hf. (A.31 

By requiring the mixture of molecules, atoms, 
and ion-electron particles to have the same 
enthalpy as the mixture of molecules, atoms, 
ions and electrons, and by using equation (A.3) 
we obtain 

h, - h, z h: + tiO + cpAT, (A.41 

where cpAT appears due to the presence of 
electrons. 

The equation of state for the mixture is 

p = kT T n, = (pkT/2m,) (1 + cd + 3~~). 

(A.51 
The viscosity of the partially ionized diatomic 

gas was obtained by Fay and Kemp under the 
assumptions that ions and electrons contribute 
nothing to the viscosity; when their formula is 
written in terms of mass fraction it is 

p = ~~(1 + cA + c,)-I[@82 + 1.18(c, 

+ %)I w + c,4 - CM + c‘4 + 3ci-J * (A-6) 

The ratio in the last set of square brackets 
represents a correction factor accounting for 
neglecting the cont~butions of ions and elec- 
trons; it is the mole fraction of atoms and 
molecules in the ionized gas mixture. Although 
it is true that electrons would contribute 
negligibly to the viscosity, due to their small 
mass, ions cannot be neglected because their 
mass is essentially equal to that of atoms; 
hence, we shall not neglect the contributions of 
ions; the correction factor in equation (A.6) 
then becomes the molecule, atom and ion mole 
fraction, and equation (A.@ becomes 

,X = j+[O+82 + 1.18(c, + c&o + c, + 3c,). 

(A.7) 

It may be noted that the viscosities obtained by 
equations (A.6) and (A.7) were calculated [21] 
and compared with Hansen’s viscosity ; it was 
found that equation (A.7) is to be preferred over 
equation (A.6). 

The approximate functional forms for the 
dissociation and ionization equilibrium con- 
stants used in the numerical calculations are 

KD = A exp.( - t&/T), (4‘4.8) 

ICI = DT” exp.( - O,lT), (A.9 

where A, D and m are constants. Equation (A.9) 
was suggested by Duclos et ~1. [25] with 
m = 5/4 for nitrogen. Both equations (A.8) and 
(A.91 were used to calculate the equilibrium 
composition for oxygen and nitrogen. In com- 
parison with Drellishak’s [22] data equation 



1044 SAID E. MATAR and A. A. KOVITZ 

(A.8) gives excellent agreement ; equation (A.9) characteristic temperatures for dissociation and 
is in good agreement for T > 5000°K. For ionization for nitrogen gas ; they are respectively 
nitrogen gas we found A = 1.14 x 1O25 cm3, 113 000°K and 168 000°K. 
D = 0.97 x 10” cm3/“K. 0, and 0, are the 

Resum&L’Bcoulement de Couette d’un gaz diatomique symetrique partiellement ion% est ttudie a la 
fois pour l’ecoulement en tquilibre chimique et pour l’ecoulement chimiquement ligt ; les resultats 
representent une generalisation directe de l’ecoulement de Couette avec settlement de la dissociation. On 
insiste sur la mise en lumiere du role de l’ionisation au moyen de cette geometric relativement simple, et 
de l’introduction d’un nouveau modele temaire pour la diffusion. On considtre que le melange gazeux 
consiste en molecules et en tledtrons, sauf pour les effets de la diffusion oh Ion suppose que les ions et 
les electrons diffusent ensemble comme une seule espece (diffusion ambipolaire). La theorie est limit&e 
aux Ccoulements dans lesquels les densites numeriques d’ions et d’tlectrons, bien qu’importantes, sont 
faibles par rapport I celle des particules neutres et la thtorie est conduite en linearisant par rapport aux 
fractions massiques ion-electron. Les equations linbarisees sont rbsolues analytiquement et les resultats 
numeriques sont present& pour l’azote. On trouve que I’ionisation produit un flux massique ion-electron 
allant de la paroi superieure “chaude” a la paroi inferieure “froide”; lorsque la phase gazeuse est en 
equilibre chimique, l’ionisation conduit le flux massique atomique ii se scinder en deux Ccoulements, I’un 
diffusant vers la paroi superieure “chaude” et l’autre vers la paroi inferieure “froide”. L’ionisation a un 
effet important sur la distribution de temperature et sur I’enthalpie de frottement. Le flux de chaleur 

transmis croit avec le degre d’ionisation. 

Zusammenfassung-Die Couette-Stromung eines teilweise ionisierten symmetrisch-zweiatomigen Gases 
wird untersucht, sowohl fiir das chemische Gleichgewicht, als such fi,ir chemisch eingefrorene Stromung : 
die Ergebnisse hefem eine direkte Verallgemeinerung der Couette-StrBmung nur mit Ionisation. Die 
Uberlegungen konzentrieren sich auf die Ionisation anhand der vorliegenden ziemlich einfachen Geo- 
metrie, und auf die Einfiihrung eines neuen Modells fiir die Diffusion von drei Komponenten. Das 
Gasgemisch ist aus folgenden Komponenten bestehend gedacht : symmetrische zweiatomige Molekiile, 
(atomare) Ionen und Elektronen. Fiir die Diffusionseffekte sind allerdings die Ionen und Elektronen als 
eine Einheit diffundierend gedacht (ambipolare Diffusion). Die Theorie ist begrenzt auf Striimungen, mit 
kleiner Dichte der Ionen oder Elektronen im Vergleich zur Dichte der neutralen Teilchen. Die analytische 
Behandlung ist linearisiert in Bezug auf den Massenanteil der Ionen und Elektronen. Die linearisierten 
Gleichungen sind analytisch gel&t, und f%r Stickstoff sind numerische Ergebnisse wiedergegeben. Es 
zeigt sich, dass die Ionisation einen Ionen-Elektronen-Massenstrom von der oberen “heissen” Wand zur 
unteren “kalten” Wand hervorruft. Wenn das Gas in chemischem Gleichgewicht ist, ruft die Ionisation 
eine Aufspaltung des atomaren Massenstromes in zwei Striime hervor, wovon einer zur oberen “heissen” 
Wand und der andere zur unteren “kalten” Wand diffundiert. Die Ionisation hat eine deutliche Auswirkung 
auf die Temperaturverteilung und die Eigentemperatur. Der Warmeiibergang steigt mit dem Grade der 

Ionisation. 

~~oTaqHsr-~ccneAyeTcRTeseHMe~yaTTasaCTn~HO~~OH~3~pOBaHHOrOCLIMMeT~~~HOrOAByXa- 

TOMHOrO ra3a AJIfl CJIyYaeB XllMIi~eCKIlpaBHOBeCHOrO~XMMIlYeCH~3aMOpO~eHHOrOTe~eHIl~; 

pe3yJIbTaTbI IIpeACTaBJIeHbI B BclAe IIpRMOrO 0606WeHHH Te'IeHPIR KyBTTa IIpM HaJIRWlLI 

TOJIbKO AMCCO~Ha~HM. OCHOBHOe BHHMaHEle 06paIqaeTCJS Ha OCBeueHHe poJIIl IIoHPi3aIZHR 

IIyTeM MCIIOJIb30BaHIIH 3TOfi OTHOCRTejIbHO KpOCTOi reOMeTpHI4 Ei BBeAeHMH HoBOt TpotiHof4 

MoAenn Aw@$~yam. IIpeanonaraeTca, 9ro ra30nan mecb COCTOMT 113 CnMMeTpmHbIx AByx- 

aTOMHbIX MOJIeKyJl, aTOMOB II HOHOB (BTOMHbIX) II NIeKTpOHOB, 3a HCKJIIOYeHBeM FiBJIeHId 

nn@r$yariu, rAe npennonaraercn, 9To E~OH~I II 3neKTpoHbI AH@@~HAH~~H)T KaK 0A~0 uenoe 

(aM6HIIOnFIpHaH AHI$I$I~~HH). Teopm OrpaHMseHa Te'IeHHeM, rAe nJIOTHOCTb qllCJIa IlOHO3 II 

3JIeKTpOHOB, XOTR II AOBOnbHO 3HaWTeJIbHaH, BCe We MaJla II0 CpaBHeHHIO C HetTpaJTbHbIMH 

sacTklqaMl4; aHaJIH3 HMeeT JIMHe8HbIti XapaKTep OTHOCLlTeJIbHO MaCCOBbIX KOHqeHTpaUMt 

MOHOB-3neKTpOHOB.JIIIHeapI130BaHHbIeypaBHeHIlrrpema~TCs aHaJIATI14ecKA. ~ReACTanneHbI 
WfCJleHHbIe pe3yJIbTaTbI AJIH a30Ta. YCTaHOBJIeHO, 'IT0 HOHH3aqSW BbI3bIBaeT MaCCOBbIi 

AOHHO-3JIeKTpOHHbIti IIOTOK II0 HaItpaBJIeHHIO OT BepXHeR QrOpWIefi9 CTeHKM K HWKHeti 

<<XOJIOAHOt$. nplr XZSMWIeCKOM PaBHOBeCHH ra30BOfi $a3bI MOHH3aUHR BbI3bIBaeTpaCCJIOeHElt 

MaCCOBOrO IIOTOKa aTOMOB Ha ABa, OAnH 113 KOTOpbIX AH@$yHAHpyeT K BepXHem @ropJNefi') 

CTeHKe,a ApyrOti K HElHEHei- (<XOJlOAHOt,. MOHH3aqHR OKa3bIBaeT 3HaWiTeJIbHOe BJlHHHEle 

Ha pacnpeAeneHIle TeMnepaTypbI II 3HTaJIbIIHIO BOCCTaHOBJIeHHR. CKOpOCTb TonnOO6MeHa 
BO3paCTaeT CO CTeIIeHbH) MOHM3aqHII. 


