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Abstract—The Couette flow of a partially ionized symmetric diatomic gas is studied for both chemical
equilibrium and chemically frozen flow; the results represent a direct generalization of Couette flow with
dissociation only. Emphasis is focused on illuminating the role of ionization through the use of this
relatively simple geometry, and the introduction of a new ternary model for diffusion. The gas mixture is
considered to consist of symmetric diatomic molecules, atoms, ions (atomic) and electrons, except for
diffusion effects where the ions and electrons are assumed to diffuse together as one unit (ambipolar
diffusion). The theory is limited to flows where the ion or electron number density, though significant,
is small relative to the neutral particles and the analysis is carried out in a linearized fashion with respect to
the ion-electron mass fractions. The linearized equations are solved analytically and numerical results are
presented for nitrogen. Ionization is found to produce an ion-electron mass flux flowing from the upper
“hot” wall to the lower “cool” wall; when the gas phase is in chemical equilibrium ionization causes the
atomic mass flux to split into two streams, one diffusing toward the upper “hot” wall and the other
towards the lower “*cool” wall. Ionization has a marked effect on temperature distribution and the recovery
enthalpy. The heat transfer rate increases with the degree of ionization.

NOMENCLATURE N.. mass flux of species *“i” into the
Cs, skin friction coefficient ; lower wall;
¢ mass fraction of species “i”’; Nu, Nusselt number, = St Re,Pr;
Cops “frozen” specific heat of gas mixture ; n, total number density of the mixture;
D5 binary diffusion cpefficient ; n;, number density of species ““i”’;
h, enthalpy per unit mass of mixture; Nys number density of heavy particles,
h,, enthalpy per unit mass of species*‘i”’; Ny + Ny + 1y,
h®, dissociation energy per unit mass of Pr,, “frozen” Prandtl number;
atoms and ions; (—4q,), heat flux into the lower wall;
H, ionization energy per unit mass of Re;, Reynolds number, = psu;6/u;;
ions; St, Stanton number, = — q,,/[pudh, —
k, Boltzmann’s constant ; h,)];
Kp, dissociation equilibrium coefficient ; Sip diffusion  cross-section  between
K, ionization equilibrium coefficient ; particles of species “i” and species
L, Lewis number, defined in what “
follows equation (3.11); V. diffusion velocity of species “i”;
m, mass of particle ‘i ; u, mass average velocity ;
+ Now at Department of Mechanical Engineering, %Y, distances along and normal to the
University of Toronto, Toronto, Canada. flow;
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Greek symbols

P, vibrational contribution to molecule
specific heat;

V. vibrational contribution to molecule
enthalpy;

J ratio of the number of atoms con-
verted at the wall into molecules to
the total number of atoms striking
the wall per unit time;

g ratio of the number of ion-electron
particles converted at the wall to
neutral particles to the total number
of ion-electron particles striking the
wall per unit area per unit time;

o, distance between plates;

K, “frozen” thermal conductivity;

Ky “reaction” thermal conductivity;

Keg “equilibrium” thermal conductivity;

;, mass rate of formation of species ““i””;

P, mass density of mixture;

0, recovery enthalpy factor,

U viscosity of the mixture.

Subscripts

A, atoms;

E, electron ;

1, ion;

M, molecule;

R, ion-electron ;

e, chemical equilibrium ;

r, recovery (insulated lower wall);

w, lower wall;

d, upper wall ;

v vibration.

1. INTRODUCTION
IN THIS paper we study the effects of ionization,
using a ternary model of diffusion (molecules,
atoms, and an ion-electron specie determine the
effects of diffusion) on a dissociating and
ionizing symmetric diatomic gas in a Couette
flow. This ternary model of diffusion has not,
to the authors” knowledge, been used before in
Couette or boundary layer types of flow. Its use
represents a generalization of Clarke’s [1] work
(dissociation; binary model) to include partial
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ionization (dissociation and ionization ; ternary
model). The use of this model in obtaining an
analytic solution shall be presented.

The simplifications resulting from the geo-
metry of this type of flow were exploited by
Illingworth [2] to solve the compressible flow
problem exactly, and by Clarke [1] and
Enkenhus [3] to study the effects of dissociation
(using a binary model of diffusion) on the flow
of a symmetric diatomic gas. Leipmann and
Bleviss [4] considered the Couette flow of a
dissociated gas, and indicated how the effect of
ionization, on a gas in chemical equilibrium,
can be taken into account. Couette flow was
also used by Bleviss [5, 6] to study the effects of
magnetic and electric fields on the flow of an
electrically conducting gas in chemical equi-
librium. Chung [7] studied the electrical charac-
teristics of a slightly ionized monoatomic gas in
a Couette flow.

The motivation for treating this type of flow
again is the ability to obtain analytical solutions
in a form which explicitly reveals the effects of
ionization. We intend to exploit these results to
disclose in some detail the influence of ionization
(and the artificial suppression of ionization) on
the flow of a dissociating and ionizing symmetric
diatomic gas.

The effect of ionization on heat transfer rates
in stagnation point flow has recently been
studied by several authors. Adams [8] used the
dissociated gas theory of Fay and Riddel [9]
with a correlation factor to account for ioniza-
tion. Hoshizaki [10], Pallone and Von-Tassel
[11] and Cohen [12] considered only the
chemical equilibrium case of a partially ionized
diatomic gas. Solutions were obtained by
numerically integrating the governing equations
using the total thermodynamic and transport
properties of the gas. Scala and Warren [13]
also treated the chemical equilibrium flow of
ionized nitrogen in the stagnation regime. The
gas was considered to be a four component
mixture: molecules, atoms, ions and electrons.
There is an indication that they may have
assumed too small a diffusion cross-section
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between ions and electrons:Fay and Kemp [14]
and Fenster [15] used a binary model of
diffusion for the purpose of evaluating the
diffusive mass fluxes. Fay and Kemp considered
atoms, ions and electrons to diffuse together as
one particle; molecules, however, were assumed
to have a different diffusion velocity. Fenster
used this same model when the flow is chemically
frozen ; when the flow is in chemical equilibrium
he assumed that air, before it gets ionized,
consists of atoms and molecules; when it is
ionized there are atoms and ion-electron parti-
cles only.

Scala and Warren’s calculations show that
the heat transfer rate increases by more than a
factor of two as compared with that calculated
by extrapolating the dissociated gas theory. The
other authors’ results predict that ionization
increases the heat transfer rate, over that
calculated by the extrapolated dissociated gas
theory, by only 30 per cent or less.

These divergent results suggest that further
study is desirable; furthermore, the methods of
treatment mentioned above do not disclose
explicitly the role played by the diffusion of the
ionized particles in the flow, except for the work
of Fenster [15] for a binary model. By using the
total thermodynamic and transport properties,
the individual species mass fluxes, through
which the diffusion role of each type of particle
in the gas mixture may be examined, cannot be
obtained. The binary model of diffusion used by
Fay and Kemp suppresses the diffusion of the
ionized particles (ions and electrons) relative to
the atoms; in particular, when the gas is at
sufficiently high temperatures where there are
only a few molecules, it effectively eliminates
diffusion completely.

The partially ionized symmetric diatomic gas
we are considering is a mixture of four different
kinds of particles: molecules, atoms, ions
(atomic) and electrons. Because of their small
mass, electrons should have the largest diffusion
velocity; however, due to Coulomb forces
between the charged particles, electrons are
decelerated by the heavier, slower diffusing ions.
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In ionized gas mixtures, where there are no self
generated nor imposed electric fields, ions and
electrons have been considered to diffuse to-
gether as if they were one particle, which is
known as “ambipolar” diffusion. This con-
sideration is valid for phenomena taking place
at a characteristic distance greater than the
Debye shielding distance;} within the Debye
distance electrons diffuse with a different velocity
than ions. In this paper, the Debye shielding
distance is assumed much smaller than the
characteristic length of the flow. Thus, when
considering the effects of diffusion on such
flows, the ionized symmetric diatomic gas will
be considered to consist of molecules, atoms and
“ion-electron” particles; the ‘‘ion-electron”
particles diffuse as one unit. For effects other
than diffusion, all four particles are considered.
The ion-electron particles are designated by the
subscript “R”.

2. FLOW EQUATIONS, MULTICOMPONENT
DIFFUSION COEFFICIENTS AND DIFFUSIVE
MASS FLUXES
"The governing equations for a multicom-

ponent gas mixture in a Couette flow are:

d(pc;V)/dy = (2.1)
d[u(du/dy)]/dy =0, 2.2)
d{x(dT/dy) — p Y hic;V]/dy + p(du/dy)® = O,

(2.3)

where in the energy equation (2.3) radiation has
been neglected.

The rate of species mass formation @; is zero
in gas phase when the flow is chemically frozen;
for equilibrium flow its value need not be
evaluated explicitly as will be seen in section 3.1.

The diffusion velocity ¥; must be expressed in
terms of variables such as p, ¢, etc., and their
gradients. For a multicomponent gas mixture
the diffusion velocity for each of the species in

+ The Debye [16] shielding distance = 6:9(Ty/ng)? cm;

for p = 1.0 atm and Ty = T = 12 000°K it is equal to 291
x 107 ¢cm.
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the mixture can be obtained from the species
mass flux equation which, when neglecting
thermal diffusion, is [17]

piVi = (n?/p) ). mim;Dy;[d(n/m)/dy].
i#i (2.4)

Neglect of thermal diffusion is reasonable when
temperature gradients are not too large, and
will enable us to compare our results with other
work [14].

Since ) p;V; =0, only the mass fluxes of

L
atoms and ‘“‘ion-electron” particles need be
obtained for the ternary model considered here.
In order to do this, we note that the mass of the
combined “ion-electron” particle is mg = m; +
mg = m,; since the effects of diffusion are to be
accounted for by a 3-component model we write

p = nm = nymy + nmy + Ny,

o

3
=Y plp=cutciteg=1 (25
i=1

I

i=1

3 3
1m = njp = .; n/p =

Y e/m.
i=1

Using equation (2.5) and noting that my =
2m 4, one obtains

d(nyy/n)dy = — (mz/mAmM) (dc,/dy + dcg/dy),

d(n4/n)/dy = (/M gmy) [(1 + cg)(de/dy)
— c4(dcg/dy)],
d(ng/m)dy = (% /m gy [ — calde,/dy)
+ (1 + c,) (deg/dy)l;
(2.6)
of course, m? is not constant.
Substituting equation (2.6) into equation (2.4)

and using equation (2.5), the atomic and the
“jon-electron’ mass fluxes become

pcaVy= — plD i + (1/2) crD 4xl(dc,/dy)
+ pl(1/2) D 4x(1 + c4) — D 4] (dcg/dy),
pcrVr = pl(1/2) (1 + cg) Dr4 — Dgyl (dc,/dy)
— pl(1/2) c;Dg 4 + Drp (dcg/dy). 27
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Theories dealing with gas transport properties
consider the binary diffusion coefficient %;;
rather than the multicomponent diffusion co-
efficient D;;. We, therefore, express equation
(2.7) in terms of 2;;; this can be done for a
ternary gas by using (see Hirschfelder et al. [18])

Dy, = 912{1 + n3[(ms/my) 25

— D) D gy + 1, D15 + 13D 15)) (28)

notice that D, # D,, but 2,, = 2,,. Now
substitute equation (2.8) into equation (2.7); the

resulting expressions for the mass fluxes are in
terms of D 4p, D 40 D gass €4 a0d cg. In addition

to being complex, interpretation of these ex-
pressions is difficult. They can, however, be
further simplified.

The binary diffusion coefficient is given in
terms of the diffusion cross-section §;; by [19]

D,; = (3/8) [nkT/2) (m; + m)/mm,)*/nS,;.
(2.9)

The diffusion cross-sections of ion-atom (S;,)
and ion-molecule (S;;,) have been calculated by
Hansen [20]; he found that S, = S,,. Hence,
we shall consider S,z = S,4 Sgym = Sau Fur-
thermore, the ratio S,z/S,y was calculated
from Hansen’s data and found to vary little in
the range where ionization is present (S ,x/S 4u
>~ 0-577); we shall take this ratio to be 1/,/3.
Then equation (2.9) yields

Dar/Dam = (1 + ¢4 — cp)llcy + cR),

De/Pars = (1 + ¢4 — cp)/(1 + cg — ¢y
(2.10)

2 4z and Dy, are now related to 2 4. Using
equation (2.10) in equation (2.8) the multi-
component diffusion coefficients can be ex-
pressed in terms of & 4y, ¢4, and cg. When these
coefficients are substituted into equation (2.4),
the atomic and ‘‘ion-electron” mass fluxes are
obtained.

The resulting expressions are, however, still
quite complex. Further simplification is achieved
by noting that in the range of temperature and
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pressure we will consider (T < 12000°K, p >
01 atm) ionization is dominated by dissociation.
Therefore, cZ and higher powers of ¢z are much
smaller than ¢, and cg; the resulting linearized
(with respect to ¢z and its derivatives) expres-
sions for the atomic and the ““ion-electron’ mass
fluxes are

PCaVa= pDap{ —[1 + 2cx(l — 4 + ¢4
+ /1 = cq + ] (dcy/dy)
+ [2c + DA —c + &

+ 3¢3)] (deg/dy)}, (2.11a)

and

pcrVr = pD ap{[2¢(1 — DM - ¢,
+ ¢G4 + 3c)l (dey/dy) — [(1 + c)*M1 — ¢,
+ & + 3c)] (deg/dy)};  (2.11b)

the details may be found in [21].

At low temperatures, where the gas is disso-
ciated only, cg = 0 and equation (2.11b) shows
that pcgVy = 0; the atomic mass flux [equation
(2.11a)] reduces exactly to that of a dissociated
gas (see, for example, Clarke [1]). Thus, the
diffusive mass flux obtained by using Ficks law
(binary gas) is a special case of equation (2.11).

The qualitative effect of ionization on the
species mass fluxes may now be deduced. It is
readily seen that the polynomials containing c,
in equation (2.11) are positive and finite for
0 < ¢, < 1. First, consider the case when the
gas is in chemical equilibrium. Start from the
upper wall (corresponding to the outer region
of a boundary layer) and move towards the
lower wall (decreasing y); at the “hot” upper
wall there exist atoms, ions, electrons and a
negligible number of molecules. Moving away
from the “hot” upper wall towards the “cool”
lower wall, electrons and ions recombine form-
ing atoms; molecules, however, are not formed
as fast as atoms because of the high temperature
that exists in this region. Hence, dcg/dy is
positive and dc,/dy is negative ; equation (2.11a)
indicates that the atomic mass flux is towards
the upper wall; the ion-electron mass flux is
towards the lower wall, as can be seen from
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equation (2.11b). The directions of these fluxes
persist as we move away from the upper “hot”
wall until the atom mass fraction reaches a
maximum; at this position dc,/dy = 0, and if
dcg/dy # 0 the atom mass flux is still towards
the upper wall and the “ion-electron” mass flux
is towards the lower wall. Moving, further,
towards the “‘cool lower wall, this position of
maximum c, is followed by a region where the
small number of ion-electron particles that may
be left in the flow are neutralized ; the atoms, by
then, have started to recombine forming mole-
cules and, hence, dc,/dy becomes positive and
the atomic mass flux is now towards the lower
wall (see equation 2.11a). At very low tempera-
tures, close to the lower wall, all atoms have
recombined leaving only molecules which are
diffusing towards the upper wall.

We now compare the above results with the
case where ionization is suppressed; as in the
previous paragraph the flow is assumed to be in
chemical equilibrium. Near the upper wall the
temperature is high enough so that the gas is
completely dissociated. The gas may stay in this
state in the layer contiguous with the upper wall
before atoms start to recombine forming mole-
cules. In this region dc,/dy =~ 0 and there is no
atomic mass flux. Moving towards the lower
wall the temperature decreases until it is low
enough for atoms to recombine forming mole-
cules, and dc,/dy > 0; the atomic mass flux is
now towards the lower wall. This trend con-
tinues until all atoms recombine and the gas
close to the lower wall consists only of molecules
diffusing back towards the upper wall, there is
no local maximum in the concentration of
atomic species, as in the case when ionization is
included. Thus, ionization introduces an ion-
electron mass flux diffusing towards the lower
“cool” wall and causes the atomic mass flux to
split into two streams, one flowing towards the
upper wall and the other flowing towards the
lower wall.

When no chemical reaction takes place in the
layer, ie., the flow is chemically frozen, the
species conservation equation shows that the
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mass flux for every kind of particle in the flow is
constant. If the lower wall is catalytic, mass
fraction gradients exist in the flow and there are
atomic and ‘“‘ion-electron” mass fluxes towards
the lower wall. When ionization is suppressed,
the upper wall is generating atoms only, and the
flow is devoid of any ionized particles.

3. PARTICLE DISTRIBUTIONS
3.1 Particle concentration in the gas phase
3
Because ) ¢; = 1, the mass fraction distribu-
i=1
tion of only two species need be obtained ; those
of atoms and ion-electron particles are con-
sidered here. Furthermore, only the two limiting
cases of chemical equilibrium and frozen flow
will be discussed. Chemical equilibrium flow and
chemically frozen flow serve as limits for the
complex chemically non-equilibrium flow. These
two cases have been used in earlier studies [1,
14] and are once more utilized heve.
First consider the case when the gas phase is
in chemical equilibrium. It shall be assumed that
only the following reactions take place;

particles + A, 2 24 + particles,

3.1)
particles + A 2 A* + E + particles.

The laws of mass action for the reactions of
equation (3.1) are well known (see Drellishak
[22], for example) and for constant pressure
Couette flow may be written as

ni/mg = Kp (32)
ning/n, = K,

where n,, = my,ny =n. Since ngp =n = ng
and p = nkT, equation (3.2) yields,
(3.3)

3.4)

a?ck = 1 + 2cg — dccp — 3¢k,
ck = {[cq + 4 + 3cacgl,
where
a = (1 + 4p/kTKp): { = kTK;/2p.
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Equations (3.3) and (3.4) are to be solved for
c4 and cg in terms of o and {. Exact analytical
solutions cannot be found. However, solutions
for ¢, and ci can be obtained in terms of o« and
{ by taking advantage of the small order of
magnitude of cg. It can be seen from equation
(3.4) that small ¢z implies small {.

Since ¢, and cx vary between zero and unity
the only physical roots of equations (3.3) and
(3.4), respectively, are

cq = (120%) [—4cg + 20(1 + 2¢x — 3¢}
+ dcz/a?)],
cr = (1/2) {3c + [(BLey)* + 4l(cq + 1P}

expanding in terms of ¢z and { respectively one
gets

ey = lja + (/o — 2/a®) cg

+ Q2 = TAd) R + ..., (3.5
cg=(ca+ D +32Dcy
+(9/8) ey + DT
— (1/8) [9/4) cilca + D717 (cq
+AE+.... (36)

Equations (3.5) and (3.6) express c, and cg as

cqla, cg) = Z ao) ck,

1

and

Cr(Co (4= Z bicy) (C%)i-

We wish to obtain ¢, and ¢y as functions of «
and {. This is done by constructing a Taylor’s
series expansion for c(a, (%) and cg(a, {?); the
required coefficients may be computed from
equations (3.5) and (3.6); one obtains
ca = 1/a + (1o = 2/a®) (1 + 1/a?)¥C*

+ [(1/ — 2/a®). (1 + 2/a) + 3/a

+ (2/a® — T/da) o + /D] L+ ..., (3.7)
cr = (1o + 1/a®)¥F + [(1/a — 2/0®) (1 + 2/

+3/]+.... (3.8

where equations (3.7) and (3.8) are valid for ¢
sufficiently small.
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It may be noted that when the gas is disso-
ciated only, { = 0; thus, ¢y = 0 and equation
(3.7) gives ¢, = 1/a; which is the case for a
dissociating diatomic gas [23].

Having obtained the mass fractions in terms
of a and {, which are functions of p and T, the
mass fraction distribution in a Couette (constant
pressure) flow can be evaluated once the
temperature distribution is obtained. This can
be achieved, as shall be described later, by
solving equations (2.2) and (2.3).

When the characteristic time for chemical
reaction is much smaller than a characteristic
time for diffusion the chemical reactions in the
gas phase may be neglected; the flow is then
called chemically frozen. The species conserva-
tion equation becomes d(pc;V)/dy =0 from
which

d(pcV/dy = d(pcglVr)/dy = 0.  (3.9)

For convenience in integrating equations (2.11)
and (3.9) we change the independemt variable
from y to u (noting that pdu/dy = 1,, = con-
stant) ; integrating once, we obtain

(P2 ana/ {1 + 2¢x(l — cg + ¢4 + /1 — ¢,
+ ¢4 + 3¢l (dey/du) — [2ey + 1 — ¢,
+ ¢+ 3¢)] (deg/duw)} = Ky, (3.10)

(PD /L1 + ¢’/ —c o+ &
+ 3c)] (deg/du) — [2(1 — AL — ¢4 + ¢
+ ¢l (dcy/dw)} = K5, (3.11)

Together with Fay and Kemp [14] define a
Lewis number L = nym 2 ,5Cp /K 4, Which is
also considered constant (L = 0:6) in this
analysis. The viscosity of the ionized gas [sec
Appendix, equation (A.7)] is taken to be

p= 1 082 + 118(c, + )l AL + ¢, + 3cp).

When this is substituted into equations (3.10)
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and (3.11), and after linearizing with respect to
Cg. they become

{1+ cy)+ cp3+201 —cy+ %+ A
— 2¢4 + 3¢)1} (dey/du) — 2[(cq + e
— 2,4+ 3c2)] (deg/du) = K, [0-82
+ 118c ) (1 + ¢y + cp) + L18cx(l + )],
(3.12)

and

[(1 + c /1 = 2¢,4 + 3c))] (deg/du)
— 2[ep(l = A/ = 2¢c, + 3c¢)(dc,/du)
— K,[082 + 118c) (1 + ¢, + cg)
+ 118 (1 + )]
K, = K\/3Land K, = K}/3L.

(3.13)

To obtain the atom and ion-electron particle
distributions one must solve, simultaneously,
equations (3.12) and (3.13). Analytical solutions
will now be developed in such a manner as to
take advantage of the assumption of small cg.
The form of solution is taken to be

Cqy=Cqo + €Cqy + &84y + ...and cg = &cgy

2
+ &e%Cpy + ...,

where ¢ is a symbol denoting the order of
magnitude of the term it is associated with; ¢
will be assumed small enough so that

Cq = Cqo + 8Cyy,

(3.14)

Cr = &Cpy-

Inspection of equations (3.12) and (3.13)
suggests that to order & K, = K, + &K,
and K, = ¢K,,. Substituting these constants
as well as equations (3.14) into equations (3.12)
and (3.13), the governing equations for ¢ 4, £cg,
and-ec4; become the consecutive set of linear
differential equations



1032

dCAo/du = K10(0'82 + 118 CAO)’

SAID E. MATAR and A. A. KOVITZ

(3.15a)

d(ecgy)/dcgo — (1 — ca0) ecgi (1 + €40)* = K31 Kig (1 — 2¢40 + Gl + c40)?, (3.15b)

and

d(ec 41)/dc o — 118 £c41/(0-82 + 118 ¢ 40) = €K, 1/K o + 26K, K10 (a0 + Cho)(1 + c40)°

4 ecp  [1-18/(0-82 + 1118 c40) — 2/(1 + c40) — 21 + A1 + c40)*].

(3.15¢)

Equation (3.15a) has been used to obtain equation (3.15b) and both equations (3.15a) and (3.15b)
were used to arrive at equation (3.15¢). The boundary conditions for ¢4, £c 4, and ecg, are expressed

as follows:
aty=0,u =

aty = 6, u

The solutions for equation (3.15) are

Ca0 = (0695 + C40.,) [(0-82 + 1-18 € 405)/(0-82 + 118 ¢ 4,,)]u/u® — 0-695,
ecr; = eKy Kig F + eKa{exp. [—4/1 + co)l}/1 + c10)
ecq; = (082 + 1118 ¢40) (eKs + €Ky I + eK 4Py — eK; 1 Kg®P;) — &Cpy;

K =
107 1184,

0, C40 = Cqom €Ca1 = ECa1ws ECR1 = ECR1w}

Us, Cqo = Cq08 ECq1 = EC4y5 ECR1 = ECR1s

(3.16a)
(3.16b)
(3.16¢)

1
——In [(0-82 + 118 c40,)/(0:82 + 118 c,,)},

F=(014cu) —2—2/1 + cyo) — 81 + ca0)” " exp. [—4/1 + cy0)}

I=(118 K,o) ' In(0-82 + 118 c4p),

% (1 + c.40) — °°; 41 + a0 ],

¢, = (118)7" ZO(—I)" (4/n)) i [2(0:36/1-18) (n + s + 3) 71 (1 + c40) " 73],

@, = (1-18) ' In (082 + 118 c0) — (8/0-36)In [(0-82 + 118 ¢ )1 + ¢40)]
+(16/118) 3 (=1 @) 3 ©36/118F 3 (4m/mm!)
n=0 s=0 1

m=

x {[In(1 + ceo) +(m+s+27n+ 5+ 20+ i)

eK,,, eK,, eKs, and €K, are complicated, but
known, functions of the upper plate velocity
and concentrations at the boundaries. They are
given in [21]. The evaluation of c,p5 Caom
€C 415 EC41ws Ca1ws Crsand cg,, shall be discussed.

Equation (3.16) represents a closed form
solution for the particle mass fractions in the

—nHsH+mA+ DT+ o) T,

frozen Couette flow of a partially ionized
symmetric diatomic gas

It is now appropriate to make some comments
and comparisons with the special case where
ionization is suppressed. Consider first the case
of chemical equilibrium flow. At low tempera-
tures where the gas is dissociated only, cg = 0,
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and equation (3.5) reduces to ¢, = 1/a, which is
exactly that of a dissociated gas. On the other
hand, at very high temperatures (e.g., N, at
p=1atm, T = 9000°K) a = 1, and equation
(3.5) shows that ¢, >~ 1 — cg. Between these
temperatures the atom mass fraction must be
expressed by equation (3.5). Some authors (see
Hansen [20] and Fenster [15] assume that all
molecules dissociate into atoms before atoms
start to ionize. The above comments show how
this assumption is good only at low and high
temperatures and that equation (3.5) is more
general.

For the frozen flow case equation (3.16a) is
exactly that for the atom distribution if ioniza-
tion is suppressed (see [10]). Hence, ec,;
represents the change in atom concentration
due to ionization. This result shall be used later
when evaluating boundary conditions at the
upper wall for the numerical examples presented
in this paper.

3.2 Particle concentrations at the boundaries

When the flow is in chemical equilibrium
particle mass fractions in the gas phase are those
corresponding to their equilibrium values as
determined by the local temperature, ie., ¢; =
c;.(T). At the walls the particle mass fractions
depend upon the catalyticity of the wall surface.
That is, the particle concentrations at the walls
are not necessarily those corresponding to the
equilibrium composition. A transition region is,
therefore, present. This transition usually takes
place, however, in a negligibly thin layer such
that the mass fractions at the boundaries can be
assumed to correspond to the equilibrium com-
position at the prescribed wall temperatures (a
conventional assumption).

The frozen flow case must, however, be
treated differently because species concentration
at the walls influences the species distribution
throughout the gas. The general case where both
walls are treated as “‘strictly” solid surfaces, and
where opposing heterogeneous reactions may
occur, shall not be presented here ; for treatment
of this general case see [21]. We shall here
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consider the particle concentrations at the upper
wall to correspond to the chemical equilibrium
composition at the prescribed upper wall tem-
perature. This assumption simulates a boundary
layer flow whose free stream is a dissociating and
ionizing diatomic gas in chemical equilibrium.
Thus, ¢ 5 = €45 and cps = Cpes It was noted
before that c,, corresponds to the case where
the gas is dissociated only; hence, the boundary
conditions on concentrations at the upper wall
can be written as

Ca0s = 1/, = (1 + 4p/kT;Kp) "%, (3.17)
&Cris = (/a5 — 2/ad) (1/ot5 + 1/ad)* (3,
(3.18)

ecris = (1/5 + 1/23) 4. (3.19)

The particle concentrations at the lower wall
shall be evaluated by extension of the argument
presented by Clarke and McChesney [24] for a
dissociated gas. Define I',,, as the ratio of the
number of atoms converted into molecules to
the total number of atoms striking the wall per
unit area per unit time; also introduce I'y,, as
the ratio of the number of ion-electron particles
converted into neutral particles to the total
number of ion-electron particles striking the
wall per unit area per unit time. In general, the
atom recombination reaction is opposed by the
corresponding heterogeneous dissociation re-
action, and the neutralization reaction is opp-
osed by the heterogeneous ionization reaction;
for this more general treatment see [21].
Here we shall consider the lower wall to be
“cool” such that the heterogeneous dissociation
and ionization reactions can be neglected.
Hence, for the perfect gas mixture considered
here (p = nkT), the atomic and ““ion-electron”
mass fluxes into the “‘cool” lower wall are,
respectively (see [21]).

— pc Vil = 2l 4,¢ 4,0 [m /27K T,] i‘/(1 + Cuu

+3cp)  (3.20)
~ pcpVrly = 2@ g, Cryp [m 27k T, 13(1 + ¢,
+ 3cgy) (3.21)
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where the proper number density, n = n, +
ny + n; + ng, has been used to determine p
(which depends upon the random motion of all
the species, not their diffusion velocities). Now
the constants of integration of equations (3.10)
and (3.11) are introduced :

_pcAVA]w = TwK,1 = 3L)z:w1<l’
—pcrVrlw = 1,K5 = 3L1, K.

(3.22)
(3.23)

Substituting ¢4, = Ciow + €Catws CRw = ECR1ws
K, = K, + ¢K;; and K, = ¢K,; into equa-
tions (3.22) and (3.23) and equating terms of the
same order of magnitude we obtain

Ko = (4/3) FchAOWP(mA/znkTw)%/LpﬁugCj{l

+ Caow) (3.24)
eKyy = (4/3)FRwBCR1wP(mA/27tkTw)%/LP.su§Cf(1
+ Caow) (3.25)
and
eKyy =43 T g lecqrw
~ 3€CR1wCa0w) P(M4/27kT,)}/Lp,C (1
+ Chow)’> (3.26)

where we have introduced the coefficient of skin
friction, C, = 1,,/(3) psu;. Equation (3.24) and
(3.25) and (3.26) together with the expressions
for K,,, ¢K,, and ¢K,,, noted after equation
(3.16) may be solved for ¢ 4, £C41,, and ecgy,, in
terms of C,, T, T,, p, L and the equilibrium
concentrations at the upper wall. Thus, we have
obtained all the necessary boundary conditons
on concentration. The method of evaluating the
concentrations at the boundaries shall be dis-
cussed later. We notice, however, that the con-
centrations at the lower wall depend on the
catalyticity of the wall, I';,,. In general, the value
of I';,, may be anywhere fromI';, =0to I, =
1. We shall, however, limit our analysis to the
two extreme cases of non-catalytic wall (I',,, =
I'g, = 0) and fully-catalytic wall (I',,, = I,
= 1). In the case of a non-catalytic wall it can be
shown that all concentrations are constant
throughout the layer [21].

SAID E. MATAR and A. A. KOVITZ

4. HEAT TRANSFER AND SKIN FRICTION

The heat transfer rate (—g,) can be obtained
by integrating the energy equation (equation 2.3)
and evaluating the constant of integration at
the wall;

K(dT/dy) — p ) heV; + u[d@w?/2)/dy] = —q,,.
(4.1)

Using h = X ¢;h; with p = constant this becomes
dh/dy — z [hddc;/dy) + (pPr/u) hic;V]
+ Prg[d@w?/2)dy] = — q.Prs/u,

where Pr, = uc,,/k is the frozen Prandtl num-

ber, considered constantt, in this analysis;

Cpy = 2. Cicpi 18 the “frozen” specific heat of the
i

(4.2)

gas mixture. Integrating from y =0, using
¥
{dy'/u = u/,, replacing p;V; by equations (2.11a)
0

and (2.11b) and noting that h§ = h, and hy —
hy = h§ + hy + ¢,4T (see Appendix), we ob-
tain

h—h,+ [ (R, — TR)dc,+ | (R

CAw Rw

+ TRy dcg + Pru*/2)

= —q,Prpu/t,, 4.3)

where R,, R,, R,, and R, are known functions
of ¢, and c, and are proportional to pP 4 Pr /.
Carrying the integration to y = 4, equation (4.3)
yields

= @ = (1/2) (p,C/Pr,) Ths — h,

CAs CRS
+ § Ry — TRYl,cq + | (Ry + TRy deg

cAw CRw

+ (1/2) Pru3]. 44

The effect of ionization on the heat transfer rate
(—q,,) is most apparent in the second integral of
equation (4.4); when

cx=0, | (R, — TR;)de,

CAw

+ The frozen Prandtl number has been evaluated in [21]
for 500°K < T < 12000°K where it is shown to vary
between 0-4 < Pr, < 0:7; it is taken to be 0+6 in this study.
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reduces to

L‘A(s

hg _‘. (P@AMPrf/# — 1D dcy;
CAw

then equation (4.4) becomes exactly that ob-
tained by Enkenhus [3] for a dissociated
diatomic gas. One also notes that the ion-
electron particles transfer their dissociation and
ionization energy as well as the translational
energy (cp,T) which is due to electrons (see
Appendix). The last term in equation (4.4) is, of
course, the viscous heating term.

When equations (4.3) and (4.4) are combined
a useful relation between temperature, mass
fractions and velocity results;

h—h,+ | (Ry — TR)dcg+ | (R

CAw CRw

+ TR,)dcg + (1/2) Prul(ufu,)®
= (ufus) [hy — by + | (Ry — TRy)de,

CAaw

+ T Ry + TR deg + (1/2) Prd].  (45)

¢Rw

This expression, when using the mass fraction-
temperature relation (equations 3.7 and 3.8) for
chemical equilibrium flow or the mass fraction-
velocity relation, equation (3.16) for the frozen
flow, yields a useful temperature-velocity re-
lation. The use of equation (4.5) in solving the
Couette flow problem shall be discussed later.

The skin friction coefficient can be obtained
by integrating equation (2.2) using C, =1,/
(1/2) psu3 and Re; = pusd/us;

C, = (/Rey) j W) Ay, (46)

The recovery enthalpy is defined as the value
of h,, when g,, = 0 (adiabatic wall); from equa-
tion (4.4) we obtain

c40

hr = hd + j (Rl - TRz)ch

Car

+ 1 (Ry + TR deg + (12) Pryu, (4.7)

¢Rr
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where c,,, cg, are respectively the atom and the
ion-electron mass fractions at the adiabatic wall.

Now define the enthalpy recovery factor as
0 = (h, — hy)/(1/2)u?; from equation (4.7) we
find

c40
O=Pr,+@2u)[| (R, — TRy dc,
CRO
+ | (Ry + TR, dcgl.

CRr

(4.8)

In additon to its dependence on atom mass
fractions at the walls, we see that the recovery
enthalpy depends also on the ion-electron mass
fraction at the wall. When both ¢, = 0 and ¢,
= 0, equation (4.8) yields the well known result

0 = Prf.
A relationship between skin friction and the
heat transfer coefficient, defined by St = — g,/

psush, — h,), may be obtained from equation
(4.4) by using equation (4.7); it is

St/C, =(12Pr){1 + (h, — h,)"? [Tr(Rl

CAaw

CRr
— TRy dcy + | (R; + TRy dcgl}. (49)
As was found before for the dissociated gas [3],
the simple relation St/C, = 1/2 Pr, does not
hold any longer when the gas is ionized.

A parameter that is useful for expressing the
heat transfer rate is the Nusselt number defined
by Nu = StPr;Re;; it is obtained from equation
(4.9) as

Nu=(1/2)C,Res{1 +(h, — )~ [ | (R,

Caw

— TRy)dcy + | (Ry + TRy degl). (4.10)

SRw

5. COMPLETE FLOW SOLUTIONS,
NUMERICAL CALCULATIONS AND
DISCUSSIONS OF THE RESULTS
5.1 Chemical equilibrium flow
When the gas is in chemical equilibrium the
particles mass fractions are functions of tempera-
ture only and equation (4.5) can be written as
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h—h, + j [(R, — T'R)(dcy/dT’) + (Rs + T'Ry) (dcg/dTN] AT’ + (1/2) Prud(u/u,)®

Ts
= (ufuy) {hs — h,, + Tj (R, — TRy (dc/dT) + (R3 + TR,) (dcg/dT)] AT + (1/2) Pruj}.

(5.1)

Using the expression for h, obtained in the appendix in terms of c,, cz and T, and using equations
(3.7) and (3.8), a relation between T and u/u; is obtained:

h—h,+ | (R = TR)dc,+ | (Ry+ TRy)dcg + () Pru}(u/u,)®

CAw CRw

= (u/us) [hs — h, + | (Ry — TRy dc, + § (Rs + TRy dcg + () Prull,

Caw

where

¢Rw

Ry = (pD 4pePr /) {h3[1 + 2¢p(1 — ¢ + 4D —cy+ G+ 3]
- (hg + h{)) cpll — c%z)/(l —C4t Ci + 30/31)} - 3,

R, = ¢, lpD anPrs/p) el — D/ — ¢4 + ¢4 + 3cd),

Ry = (0D 4mPr/w) [(h8 + Ho) (1 + ¢*/(k — ¢+ i +3¢)
— 2hR(c + L — cq + G + 3cD)] — (hg + ho),

R, = CpA(P@AMPrf/ﬂ) 1+ CA)3/(1 —cy4+ Ci + 3Ci)-

Having obtained the T vs. u/u, relationship,
the skin friction is obtained by integrating
equation (4.6). The velocity distribution, and
consequently the temperature distribution, is
obtained from

ujugs
y/é = (2/Reacf) _5) (/ug) Aufu,),  (5.2)

which results from integration of equation (2)
fromy = 0.

The recovery temperature is obtained by a
trial and error procedure based on equation
(A.1) of the Appendix. The recovery temperature
is then used in equations (4.8) and (4.10) to
obtain the enthalpy recovery factor and the
Nusselt number respectively.

5.2 Frozen flow
Particle concentrations at the upper wall are
obtained from equations (3.17), (3.18) and (3.19).
A value for C, is assumed and c,,, is calculated

by iteration from an equation resulting from
equating equation (3.24) with K, following
equation (3.16c). Then e&c,y, and cg, are
calculated from their respective equations men-
tioned earlier. A T vs. u/u, relationship is then
obtained by assuming an initial relation and
iterating by using equation (4.5). This relation-
ship is then used to integrate the equation

1
C; = (2/Rey) j(; (u/uy) du/u,)

which results from equation (5.2). The new value
of C, is then compared with the assumed C, and
the whole process is repeated until convergence
is achieved. For further details see [21].

The recovery temperature is computed by
assuming a wall temperature T,; boundary
concentrations and a temperature vs. velocity
relation are then obtained. This T vs. u/fu,
relation is then used in equation (4.7) written as
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cpaT, = {hs — (1/2) Prf“«% — hi(cs + cg,)
1
— (h§ + o) cge + g [(Ry = TR,)dc,/d(u/uy)

+ (R3 + TR,) dcg/d(u/us)] dlu/u,)}
X [(07 + 02 l//r) (1 — Cyqr — CRr) + Car
+ 2cg,] !

The resulting recovery temperature is used
again and the whole process is repeated until T,
converges. Nusselt number and the recovery
enthalpy factor are obtained from equations
(4.10) and (4.8).

5.3 Numerical calculations and discussion of the
results

Calculations performed here are for nitrogen,
which has a dissociation energy of 9-756 eV/
atom. The vibrational temperature for nitrogen
is T, = 3400°K and the value for L was found
by Fay and Kemp to be approximately 0-6. The
upper wall temperature is taken to be 12000°K
and the lower wall temperature is 500°K. The
results presented here in graphical form are
compared on the same graphs with the results
obtained for the flow, if ionization were not to
occur; that is, when ionization is artifically
suppressed. The reason for doing so is that we
wish to know explicitly what are the effects of
ionization on the flow. The flow with ionization
suppressed was thus treated under the same
boundary conditions, using the same thermo-
dynamic and transport properties, except for cp
which was set equal to zero.

All the numerical calculations were carried
out on a CDC-3400 digital computer.}

The velocity distribution is shown in Fig. 1;
the steeper velocity gradient of the ionized gas
flow is due to the reduction in the viscosity of
the diatomic gas when it becomes ionized.

The temperature distribution is shown in
Fig. 2. When the gas phase is in chemical
equilibrium the temperature gradient near the

1 The authors gratefully acknowledge the machine time
granted by the Vogelback Computing Center of North-
Western University.
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FIG. 1. Velocity distribution for the couette flow of nitrogen ;
fully-catalytic wall for the frozen flow cases.

“hot” upper wall is small. This indicates that
heat transfer in this region is mainly due to
diffusion, for as we move towards the lower
wall ionized particles are neutralized, releasing
their ionization energy. Part of this energy is
carried by thermal conduction and we note that
the temperature gradient becomes steeper as
the number of ionized particles decreases. When
most of the ionized particles have been neutral-
ized to atoms and these have now reached a
maximum concentration, the energy released
by neutralization is carried primarily by thermal
conduction, and results in the steep temperature
gradient seen at T/T, = 14. This is followed,
moving towards the lower wall, by a region
where atoms are now diffusing towards the
lower wall, as explained earlier. The energy
transfer is now by thermal conduction and atom
diffusion, hence, the reduction in the tempera-
ture gradient. Close to the lower wall most
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atoms have recombined into molecules and
released their dissociation energy. Energy trans-
fer in this region is by thermal conduction alone;;
this explains the steep temperature gradient near
the lower wall. In comparison with the case
where ionization is suppressed one can then
expect ionization to increase the rate of heat
transfer.

One may also note the linear temperature
gradient near the upper wall when ionization is
suppressed. This is because the gas in this
region has reached full dissociation, and energy
is transferred by thermal conduction alone.

When the gas phase is chemically frozen, and
the lower wall is fully catalytic, the temperature
distribution exhibits a maximum at a short
distance from the ‘“‘hot” wall. This is because
the total heat flux is constant with y, and near
the upper wall the heat flux is carried mainly by
diffusion such that excess heat generated by
viscous dissipation must be carried back to the
upper wall by thermal conduction. This may be
amplified as follows: by using equations (A.3)
and (A.4), equation (4.1) can be written as

KdT/dy + CIT + uTw = Cz,

where the constants, though different in magne-
tude, are positive since ¢, < 0. At the lower
wall the sign of (dT/dy),, depends on T,, and the
constants. In the computations carried out here
(dT/dy), is found to be positive. As y increases
(and u increases) T and x increase and dT/dy
must decrease. This continues until dT/dy = 0.
A further increase in u causes d7/dy to become
negative. Further details may be found in [21].

The mass fraction distributions are shown in
Fig. 3. As explained previously, the atom mass
fraction, when the gas phase is in chemical
equilibrium, reached a maximum somewhere
in the flow layer. This position marks the change
in the direction of atomic mass flux. When
ionization is suppressed the atom mass fraction
reaches unity at some distance away from the
“hot” wall (there is no local maximum; see
Fig. 3). Due to the low pressure (p = 0-1 atm)
and the requirement of chemical equilibrium at
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the upper wall, c; is not much smaller than c,
for this particular numerical example. Thus, the
linearized solution is a poorer approximation
near the upper wall.

Ionization increases the value of Nusselt
number, for chemical equilibrium flow, by 2-8
times as much as its value when ionization is
suppressed. This is shown in Fig. 4. However,
one must note that the increase in the Nusselt
number is partly due to the increase in the
Reynolds number which, in turn, is due to the
decrease in the viscosity. Calculations were
carried out for the same Re; (for ionized and
suppressed ionization flows); we found ioniza-
tion to increase Nu at T; = 12 000°K by 100 per
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p =Olatm, A, =06
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c
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o-4f ~——

~]
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F1G. 4. Effect of ionization on heat transfer for the couette

flow of nitrogen; fully-catalytic wall for the frozen flow

cases.

cent at T; = 11 000°K by 49 per cent and at
T; = 10 000°K by 20 per cent; that is, the heat
transfer rate increases with the increase in the
degree of ionization. When the gas phase is
chemically frozen ionization also increases the
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heat transfer rate, but not as much as in chemical
equilibrium flow. This is because near the lower
wall the ion-electron mass fraction is significant
(see discussion concerning Fig. 2), and part of
the ionization energy is retained; hence, energy
is not completely recovered.
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Fi1G. 5. Effect of ionization on enthalpy recovery factor for
the couette flow of nitrogen; chemical-equilibrium flow.

The effect of ionization on the enthalpy
recovery factor is shown in Figs. 5 and 6 res-
pectively, for chemical equilibrium and frozen
flow. The behaviour of this parameter can be
best explained with the help of equation (4.8).
When the flow is in chemical equilibrium and
at low values of the upper wall temperature.
C45 = C4r = 0 and cg; = cg = 0; then 6 = Pr,.
With increase in T dissociation occurs, but
C4 > €45 due toviscous heating (cy is still zero),
and 0 starts to decrease. At higher temperatures
where ionization occurs at the upper wall,
viscous dissipation may increase the ion-electron

SAID E. MATAR and A. A. KOVITZ

concentration at the adiabatic wall, i.e., ¢y, >
Cgrs bUt ¢, < 4. however, since atoms are
dominant in the flow, 8 starts to increase. At
very high upper wall temperatures the energy
contribution due to viscous dissipation is
relatively small so that ¢,; = ¢, and cg; = ¢y, ;
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F1G. 6. Effect of ionization on enthalpy recovery factor for
the couette flow of nitrogen; frozen flow with fully-
catalytic wall.

thus 6 approaches Pr, again. When the flow is
chemically frozen and the upper wall is at low
temperatures, 0 is also equal to Pr . At tempera-
tures where ionization occurs at the upper wall,
it was found that T, > Tj, yet the catalytic wall
reduces the particle mass fractions such that
h, < hy; this causes 8 to decrease.

The effect of ionization on the parameter
(1/2)Re;C is shown in Fig. 7. The increase in
this parameter is mainly due to the increase in
Rey; that is, ionization produces a small effect
on the skin friction coefficient.
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Figure 8 shows the “‘equilibrium” thermal
conductivity calculated by the model developed
in this paper. In the same figure Burhorn’s [25]
experimental points, Fay and Kemp's [14]
calculations and Hansen’s [20] calculations are
presented. The present model appears to give
better agreement with the experimental results
except for 5000°K < T < 7000°K. This is be-
cause we have used an approximate formula for
the ionization equilibrium constant given by
Duclos et al. [26] (see Appendix). This formula
over-estimates the number of ionized particles
in the flow for T £ 7000°K, by a maximum of
15 per cent. Our reasonable agreement with
Burhorn’s results lends support to the model
and the theory developed in this paper.

Fay and Kemp’s “‘equilibrium” thermal con-
ductivity calculated by use of their theory that
neglected radiation, was compared by them, and
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Temperature,

found in good agreement, with Yos “equili-
brium” thermal conductivity calculated by a
theory that included radiation. When radiation
is neglected the value of “equilibrium” thermal
conductivity is large and Yos’ calculations with
radiation terms removed are then in good
agreement with Maecker’s [27] measurements
{note that Maecker's measurements agree with
Burhorn’s measurements). Thus, one can con-
clude that use of Fay and Kemp’s binary model
would result in an underestimate in the calcula-
tion of the “‘equilibrium™ thermal conductivity
as well as the heat transfer rate.

As the pressure increases ionization is reduced
and the ion-electron mass fractions become
much smaller than the atom mass fraction in
which case the theory of this paper gives a much
better approximation. Also we may note that
the theory of this paper gives better approxima-
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tions for smaller upper wall temperatures. For
the case shown here (7; = 12000°K, p = 0-1
atm), the approximations become less valid near
the upper wall.

Hansen's calculations, one may note, are for
air which at high temperature may form NO;
this was neglected by Hansen and this theory
was developed under the assumption that
oxygen and nitrogen molecules are completely
dissociated before ionization commences. Also,
when the gas is ionized his mixture consisted of
N. N* 0,0% and E. The assumption of inde-
pendent dissociation and ionization reactions
may be the cause of the low *“‘equilibrium™
thermal conductivity for T < 9000°K as shown
in Fig. 8.

6. CONCLUSIONS

(1) The effects of diffusion in partially ionized
symmetric diatomic gases may be accounted
for by treating the fluid as a ternary gas mixture
containing molecules, atoms, and ion-electron
species.

(2) In addition to the atomic mass flux.
ionization produces an ion-electron mass flux
flowing towards the “‘cool’ wall; when the gas
phase is in chemical equilibrium ionization
causes the atomic mass flux to split into two
streams flowing towards the “cool” wall and
the ““hot™ wall.

(3) When the gas is thermally ionized higher
temperatures are found in most of the flow layer
as compared with the results when ionization is
suppressed.

(4) The rate of heat transfer increases with the
degree of ionization and is larger when the gas
phase is in chemical equilibrium than when it is
chemically frozen.

(5) The effects of ionization cannot be reason-
ably estimated by extrapolation of results
obtained by suppressing ionization.
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APPENDIX
Thermodynamic and Transport Properties
The specific heats of the different species of
the ionized diatomic gas mixture were given by
Fay and Kemp [14]; from these we calculated
the enthalpy of the gas mixture as [21]

i=3

Y e = [(07 + 02y) (1 — ¢, — cp)

+ ¢4 + 2cg] ¢, uT + HQlcy + cg) + hic.
(A.1)

h=

and
hy—ky=hd+ cpaT(03 —02¢); (A2)
where

¥ = (T,/T)/lexp{T,/T) — 1].

The quantity ¢,,T(0:3 — 0-2y) was calculated
for nitrogen and oxygen up to T = 12000°K
and found to have a maximum of 0-06h);
hence, we considered

hy — hy =~ h2. (A3)

By requiring the mixture of molecules, atoms,
and ion-electron particles to have the same
enthalpy as the mixture of molecules, atoms,
tons and electrons, and by using equation (A.3)

we obtain
hg — hyy = B + B + cpaT, (A4

where c,,T appears due to the presence of
electrons.
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The equation of state for the mixture is
p=kTY n = (pkT/2mg(1 + c 4 + 3cg).

(A.5)

The viscosity of the partially ionized diatomic

gas was obtained by Fay and Kemp under the

assumptions that ions and electrons contribute

nothing to the viscosity; when their formula is
written in terms of mass fraction it is

u=pl +cy+ cg) [0-82 + 1-18(c,
+ cp)] [(1 + ¢4 — cp)/(1 + ¢4 + 3cp)]l. (A6)

The ratio in the last set of square brackets
represents a correction factor accounting for
neglecting the contributions of ions and elec-
trons; it is the mole fraction of atoms and
molecules in the ionized gas mixture. Although
it is true that electrons would contribute
negligibly to the viscosity, due to their small
mass, ions cannot be neglected because their
mass is essentially equal to that of atoms;
hence, we shall not neglect the contributions of
ions; the correction factor in equation (A.6)
then becomes the molecule, atom and ion mole
fraction, and equation (A.6) becomes

= 1 (082 + 1-18(c, + el AL + ¢4 + 3cp).
(A7)

It may be noted that the viscosities obtained by
equations (A.6) and (A.7) were calculated [21]
and compared with Hansen’s viscosity; it was
found that equation (A.7) is to be preferred over
equation {A.6).

The approximate functional forms for the
dissociation and ionization equilibrium con-
stants used in the numerical calculations are

K, = Aexp{—0y/T), (A.8)
K; = DT™exp(—6,/T), (A9)

where 4, D and m are constants. Equation (A.9)
was suggested by Duclos et al. [25] with
m = 5/4 for nitrogen. Both equations (A.8) and
(A.9) were used to calculate the equilibrium
composition for oxygen and nitrogen. In com-
parison with Drellishak’s [22] data equation
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(A.8) gives excellent agreement; equation (A.9) characteristic temperatures for dissociation and
is in good agreement for T > 5000°K. For ionization for nitrogen gas; they are respectively
nitrogen gas we found 4 = 1-14 x 10**cm3, 113 000°K and 168 000°K.

D =097 x 10" em3/°K. 6, and 6, are the

Résumé—L’¢écoulement de Couette d'un gaz diatomique symétrique particllement ionisé est étudié a la
fois pour I'écoulement en équilibre chimique et pour I’écoulement chimiquement figé; les résultats
représentent une généralisation directe de I’écoulement de Couette avec seulement de la dissociation. On
insiste sur la mise en lumiére du réle de I'ionisation au moyen de cette géométrie relativement simple, et
de I'introduction d’un nouveau modéle ternaire pour la diffusion. On considére que le mélange gazeux
consiste en molécules et en éledtrons, sauf pour les effets de la diffusion o I'on suppose que les ions et
les électrons diffusent ensemble comme une seule espéce (diffusion ambipolaire). La théorie est limitée
aux écoulements dans lesquels les densités numériques d’ions et d’électrons, bien qu'importantes, sont
faibles par rapport & celle des particules neutres et la théorie est conduite en linéarisant par rapport aux
fractions massiques ion-électron. Les équations linéarisées sont résolues analytiquement et les résultats
numériques sont présentés pour I’azote. On trouve que I'ionisation produit un flux massique ion-électron
allant de la paroi supérieure “chaude” a la paroi inférieure “froide”; lorsque la phase gazeuse est en
€quilibre chimique, 'ionisation conduit le flux massique atomique a se scinder en deux écoulements, I'un
diffusant vers la paroi supérieure ““chaude” et I’autre vers la paroi inférieure *“froide”. L’ionisation a un
effet important sur la distribution de température et sur I’enthalpie de frottement. Le flux de chaleur
transmis croit avec le degré d’ionisation.

Zusammenfassung—Die Couette-Stromung eines teilweise ionisierten symmetrisch-zweiatomigen Gases
wird untersucht, sowohl fiir das chemische Gleichgewicht, als auch fiir chemisch eingefrorene Strémung
die Ergebnisse liefern eine direkte Verallgemeinerung der Couette-Strémung nur mit Ionisation. Die
Uberlegungen konzentrieren sich auf die Ionisation anhand der vorliegenden ziemlich einfachen Geo-
metrie, und auf die Einfilhrung eines neuen Modells fiir die Diffusion von drei Komponenten. Das
Gasgemisch ist aus folgenden Komponenten bestehend gedacht: symmetrische zweiatomige Molekiile,
(atomare) Jonen und Elektronen. Fiir die Diffusionseffekte sind allerdings die Ionen und Elektronen als
eine Einheit diffundierend gedacht (ambipolare Diffusion). Die Theorie ist begrenzt auf Strémungen, mit
kleiner Dichte der Ionen oder Elektronen im Vergleich zur Dichte der neutralen Teilchen. Die analytische
Behandlung ist linearisiert in Bezug auf den Massenanteil der Ionen und Elektronen. Die linearisierten
Gleichungen sind analytisch geldst, und fiir Stickstoff sind numerische Ergebnisse wiedergegeben. Es
zeigt sich, dass die Ionisation einen Ionen-Elektronen-Massenstrom von der oberen “‘heissen” Wand zur
unteren “‘kalten” Wand hervorruft. Wenn das Gas in chemischem Gleichgewicht ist, ruft die Ionisation
eine Aufspaltung des atomaren Massenstromes in zwei Stréme hervor, wovon einer zur oberen **heissen™
Wand und der andere zur unteren “kalten” Wand diffundiert. Die Ionisation hat eine deutliche Auswirkung
auf die Temperaturverteilung und die Eigentemperatur. Der Wirmeiibergang steigt mit dem Grade der
Tonisation.

Amnotanua—llccaenyercaredenne KysTra4yacTHYHO HOHUBMPOBAHHOT'O CUMMETPIYHOTO IBYXa-
TOMHOTO rasa [UIA CJIy4YaeB XMMHYECKHM PABHOBECHOTO M XMMUYECKH 3AMOPOKEHHOr0 TeUeHNUN |
pesyJbTaThl NPEACTABIEHH B Buje npaMoro o6o6umeHus redenuma HysTra npu Hammuuu
TOIBKO pucconuanuu. OCHOBHOe BHUMaHMe o0palljaeTcAd Ha OCBElleHHEe POJIM HMOHM3ANMHK
MyTeM MCNOJIb30BAHUA BTOH OTHOCUTENBHO MPOCTON reoMeTPMHM U BBeJEHMsi HOBOi Tpolinoi
mogemn muddysuu. Ilpegnonaraercs, 4To rasoBas CMeCh COCTOMT U3 CHMMMETPMYHBIX IBYX-
ATOMHBIX MOJIEKYJ, aTOMOB M MOHOB (ATOMHBIX) U 3JIEKTPOHOB, 3a MCKJIIOYEHHEM ABICHUM
mudysun, rae mpeanoNaraeTcAd, Yr0 HOHB U 3JIEeKTPOHH AMPPYHIMDPYIOT KaK ONHO 1iesoe
(ambunonapuan auddysua). Teopuna orpanudeHa TeyeHHeM, TAe INIOTHOCTb YMCIA MOHOB K
3JIEKTPOHOB, XOTA M JOBOJIBHO 3HAYMTENIbHAHA, BCE He MaJja [10 CPABHEHUIO ¢ HENTPAIbHLIMU
YacTHIAMH ; aHATHU3 MMeeT JMHelHbII XapaKTep OTHOCHUTEJBHO MACCOBBIX KOHLEHTpalUH
HOHOB-3JIEKTPOHOB. JIMHeapn30BaHHHE yPAaBHEHMs pemlaoTcA anaautudecku. [Ipencrasaens
dUCIEeHHBIE DPe3yJaLTATH MJIA a30Ta. YCTAaHOBIEHO, YTO MOHM3AIMA BHIBHIBAET MACCOBHIA
MOHHO-3JEKTPOHHHI TOTOK II0 HANPABJIEHHIO OT BepXHel «ropaueil» CTEHKM K HIDKHeH
«xomoauoit». [Ipn xuMHUIECKOM PABHOBECHH ra30BOif ¢assl HOHM3ALNA BEBHIBAET PACCIOEHMM
MaCCOBOTO MOTOKA ATOMOB HA [IBa, ONMH M3 KOTOPHX AuPPyHAMpYeT K BepXHelt «ropsyeii»
CTeHKe, a ApYroit Kk HuxHellt — «xoaonuoit ». MoHM3aUMA OKa3HBAET BHAUMTENIbHOE BIMAHME
Ha pacnpefeseHHe TEMIEPATYPH U HHTAIBOMIO BOCCTAHOBIeHHA. CKOpOCTh TensiooGMeHa
BO3PACTAET CO CTENEHbIO MOHU3ALMM.



